

max planck institut informatik

Adversarial Training against Location-Optimized Adversarial Patches

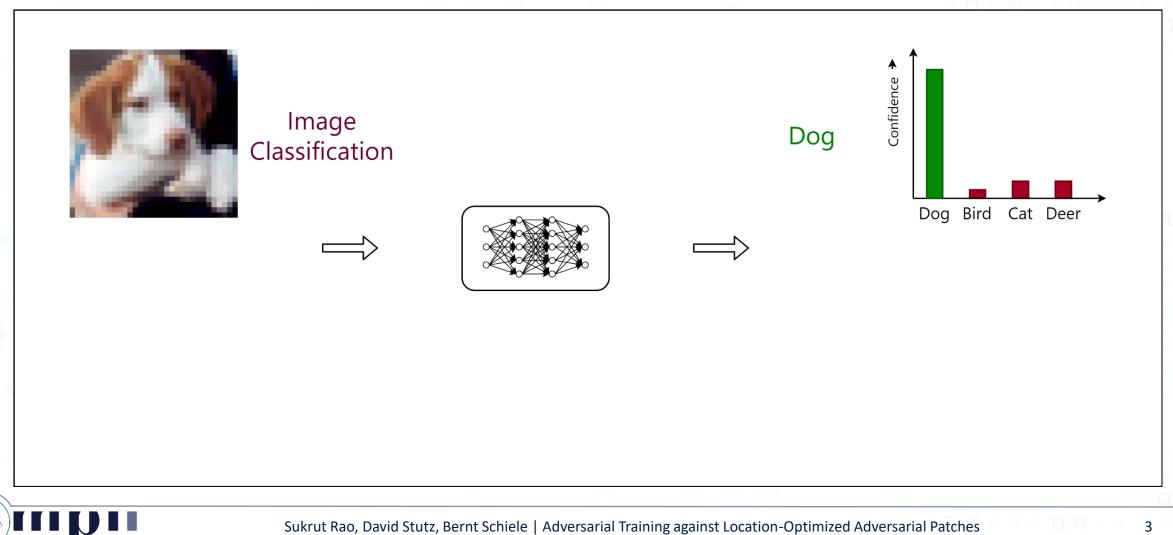
Sukrut Rao

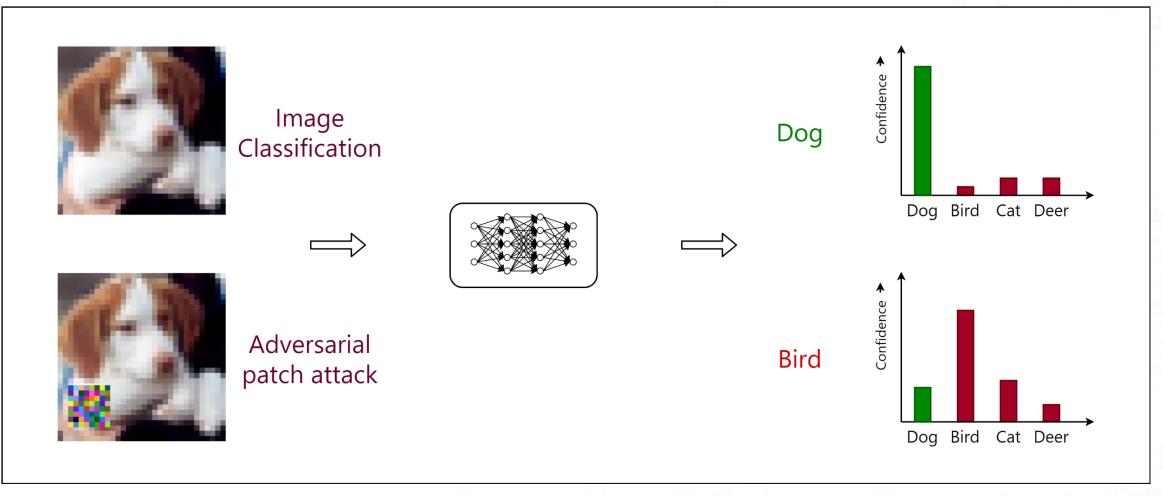
David Stutz

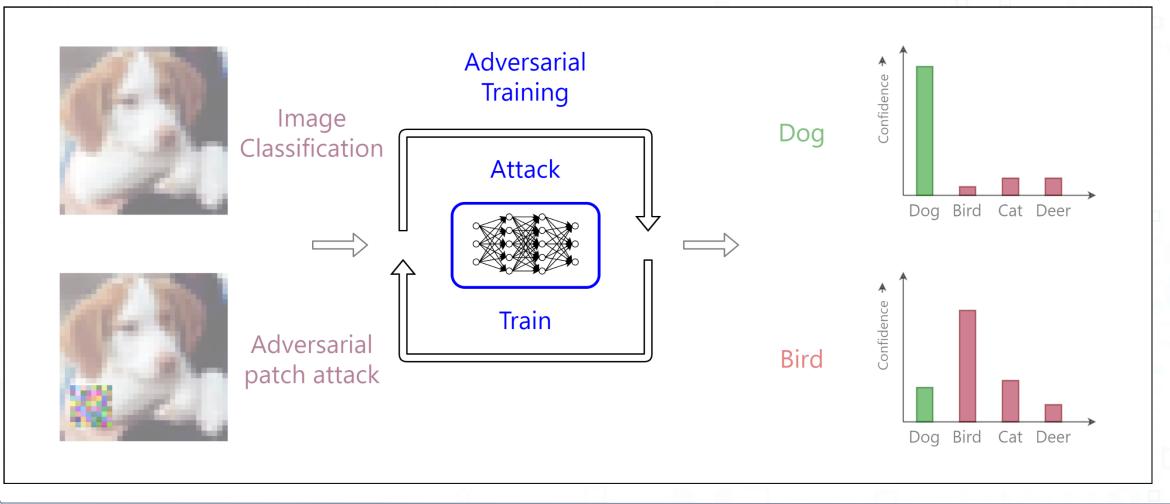
Bernt Schiele

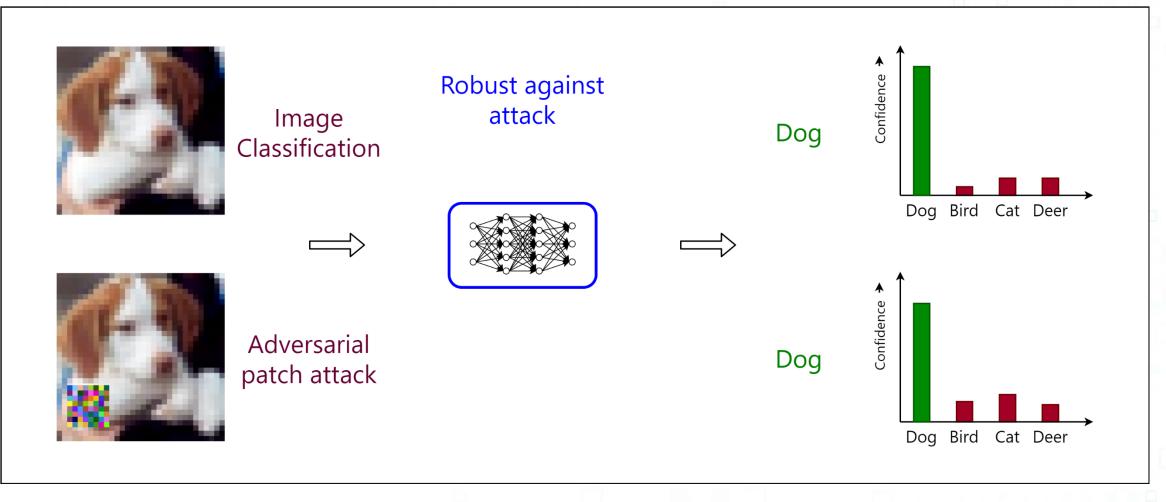
Max Planck Institute for Informatics, Saarland Informatics Campus

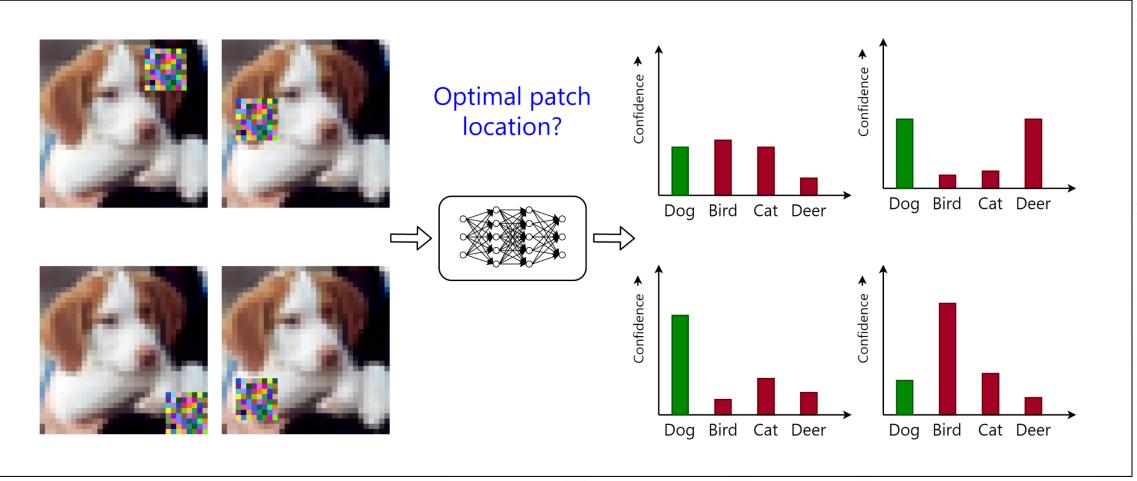
ECCV Workshop on The Bright and Dark Sides of Computer Vision: Challenges and Opportunities for Privacy and Security (CV-COPS) 2020



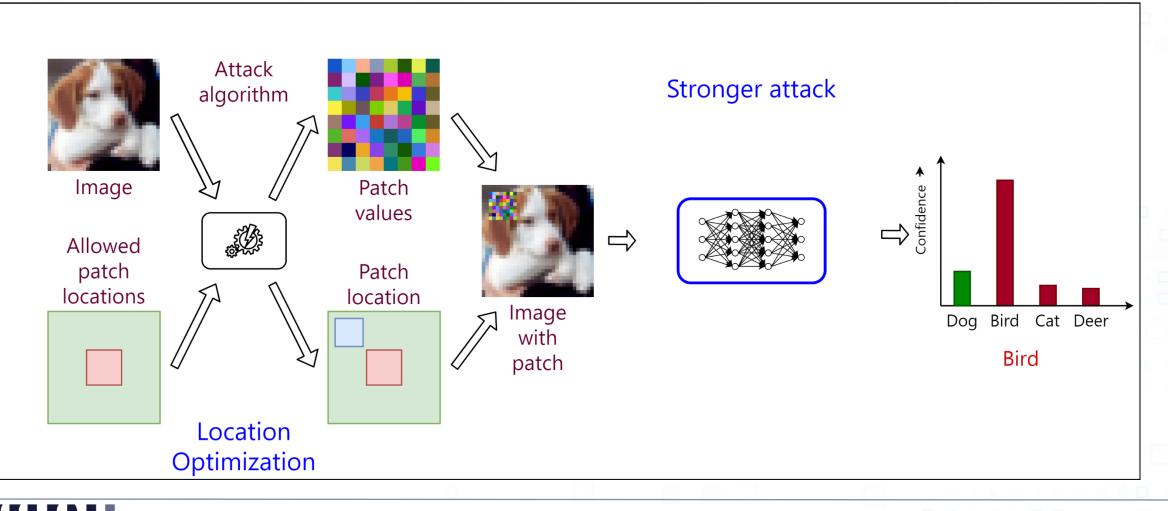


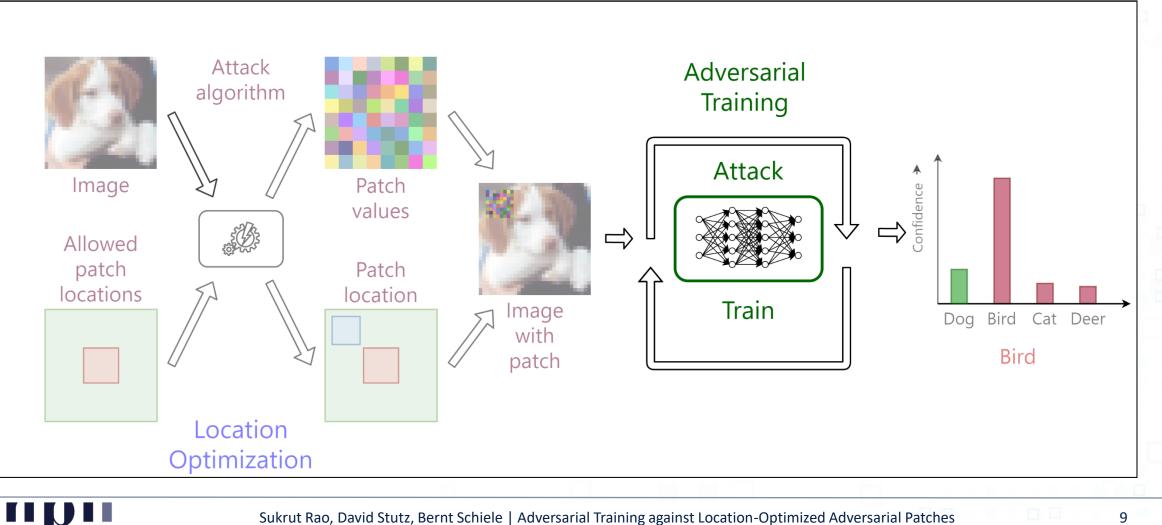


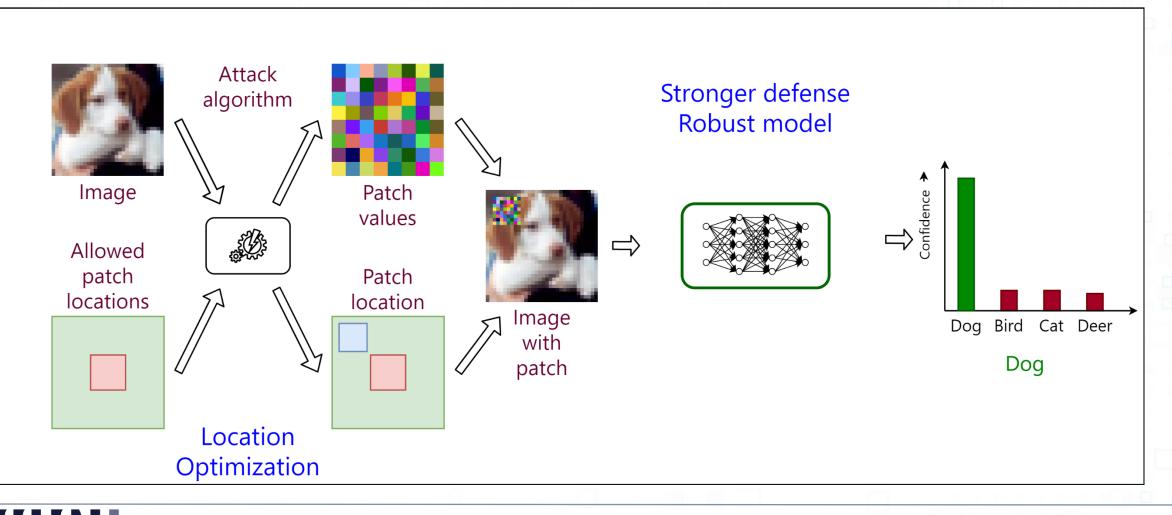




Sukrut Rao, David Stutz, Bernt Schiele | Adversarial Training against Location-Optimized Adversarial Patches







Sukrut Rao, David Stutz, Bernt Schiele | Adversarial Training against Location-Optimized Adversarial Patches

Outline

- Objective and Contributions
- Adversarial Patch Attack with Location Optimization
- Adversarial Patch Training
- Experimental Evaluation

Adversarial Patch

- A small contiguous patch of pixels to cause image misclassification
- Practical form of attack

Dog

Bird

Imperceptible attack

Bird

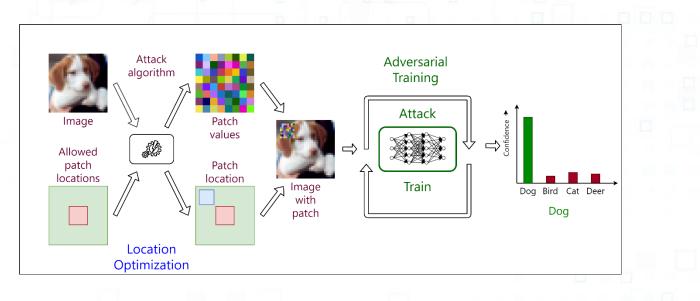
Adversarial patch

Objective and Contributions

Objective: Can adversarial training make a classifier robust against adversarial patches?

Contributions:

- Adversarial patch attack with location-optimization
- Adversarial training defense



Adversarial Patch Attack: Design Choices

Desired Property: Use strongest possible attack for each image

Motivation: Network robust against strong attacks is likely to be robust against weaker attacks

Design choices for adversarial patch attack:

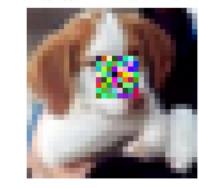
- Image-specific: Separately generated patch for each image
- Untargeted: No target class for misclassification
- Location-optimized: Find optimal patch location

- All patch locations not equally effective
- Find optimal location to place patch on the image
- Avoid locations likely to block vital features: image center

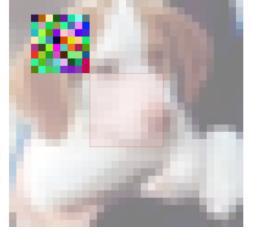
Dog

Dog Unsuccessful attack

Bird Successful attack



Adversarial Patch Attack: Initial Patch Locations



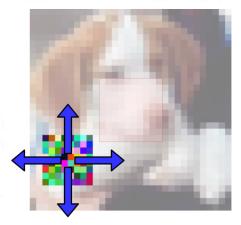
Fixed location near image corner

Random location outside center region

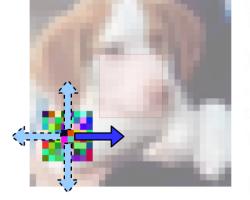
Adversarial Patch Attack: Location Optimization Strategies

Strategy:

- Check if a location in neighborhood of current location is better
- Move patch to each such location to check effectiveness



Full location optimization All four directions



Random location optimization One direction at random

Adversarial Patch Attack

Optimization function:

$$\begin{array}{c} \max L(\int ((1-m) \odot x + m \odot \delta; w), y) \\ \text{Perturbations} \xrightarrow{\delta, m} \\ \text{Mask} \xrightarrow{1} \\ \text{Network} \\ \end{array} \quad \begin{array}{c} \text{Patched image} \\ \end{array} \quad \begin{array}{c} \text{Label} \\ \text{Label} \\ \end{array}$$

Performing the attack:

- Initialize patch with random values
- Alternating steps:
 - Update patch values using gradients
 - Update patch location

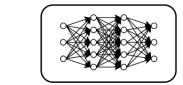
Adversarial Patch Attack

Input Image

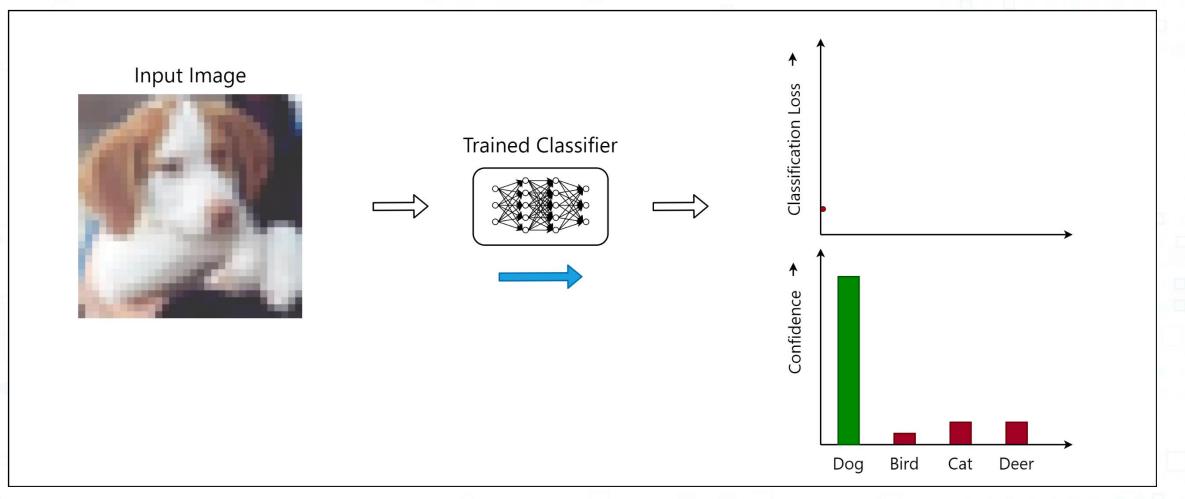
Adversarial Patch Attack

Input Image

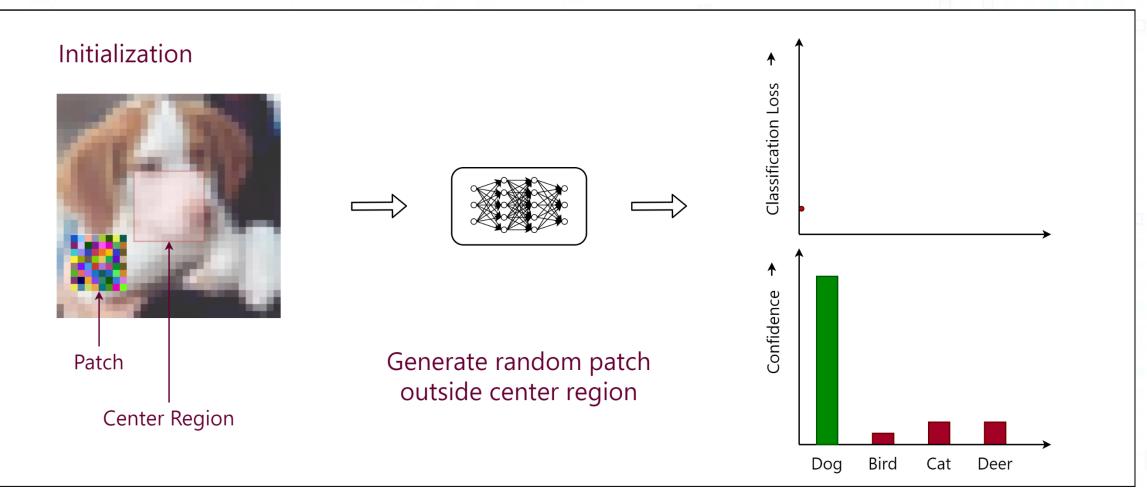
Trained Classifier



Adversarial Patch Attack

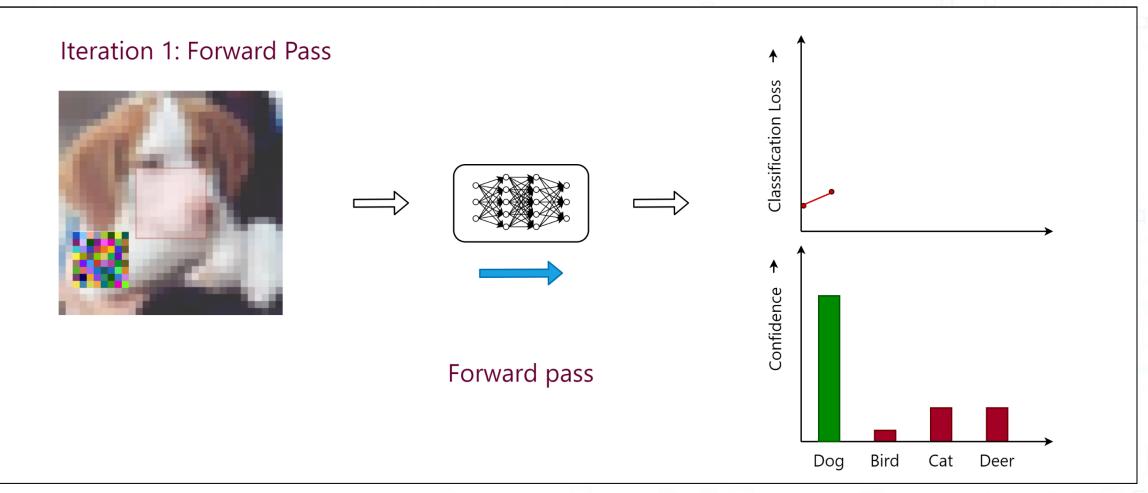


Adversarial Patch Attack: Initialization

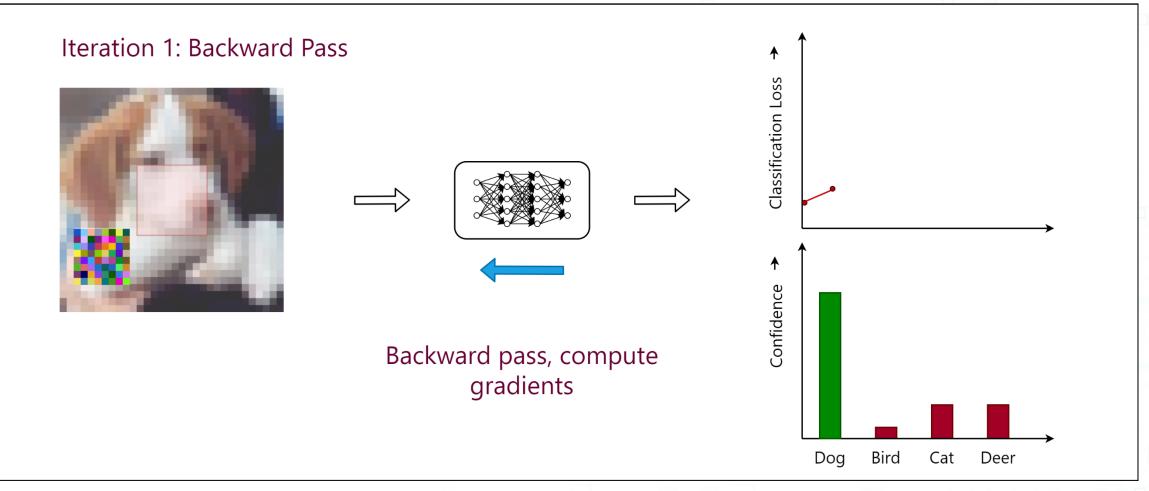


Sukrut Rao, David Stutz, Bernt Schiele | Adversarial Training against Location-Optimized Adversarial Patches

Adversarial Patch Attack: Forward Pass

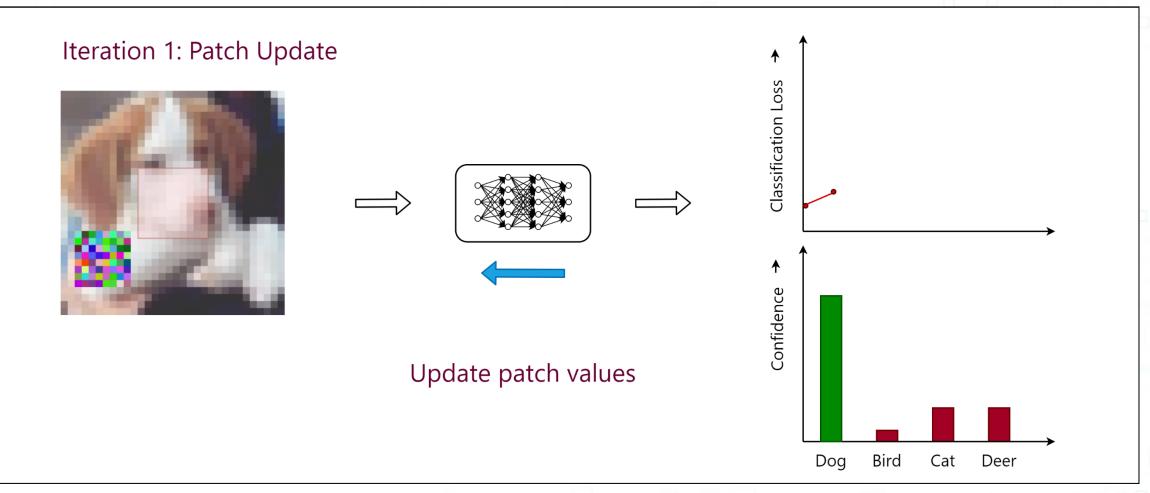


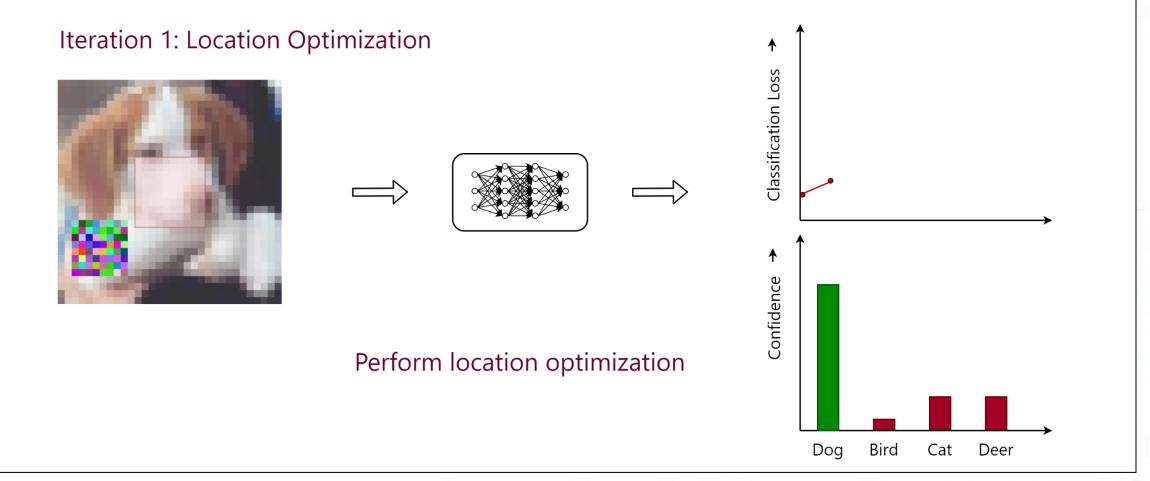
Adversarial Patch Attack: Backward Pass



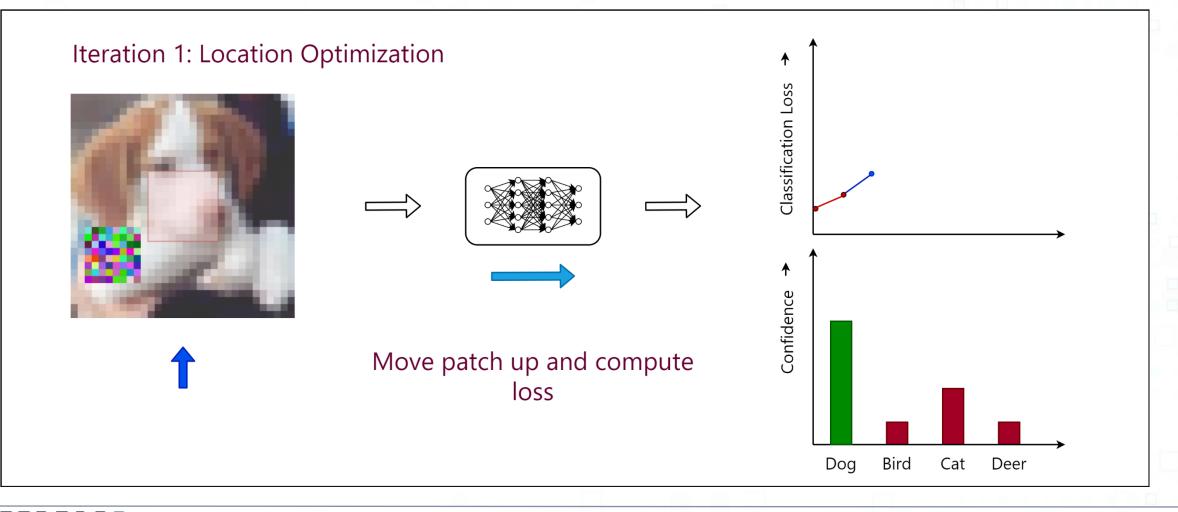
Sukrut Rao, David Stutz, Bernt Schiele | Adversarial Training against Location-Optimized Adversarial Patches

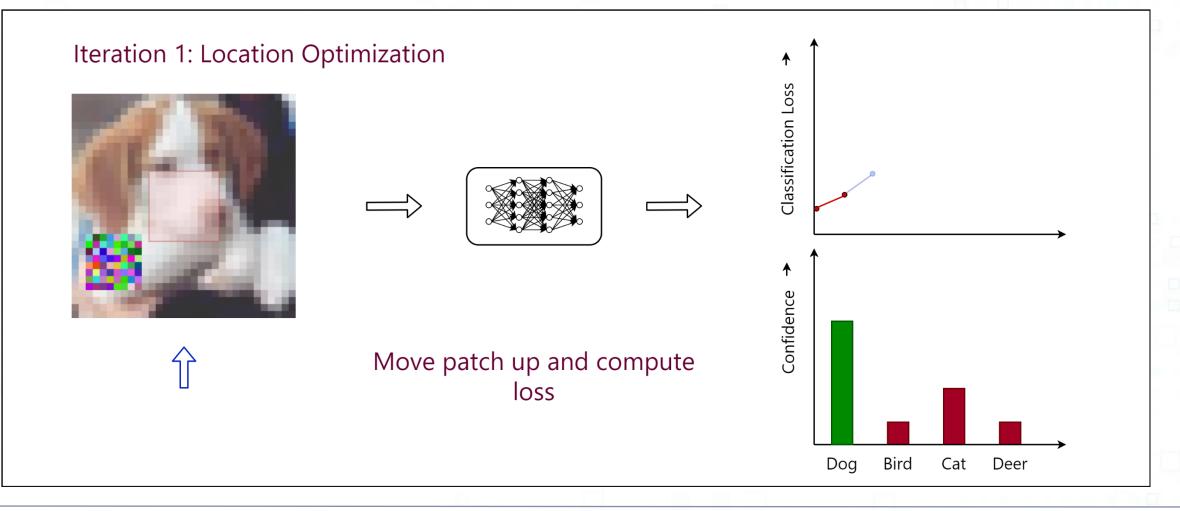
Adversarial Patch Attack: Patch Update

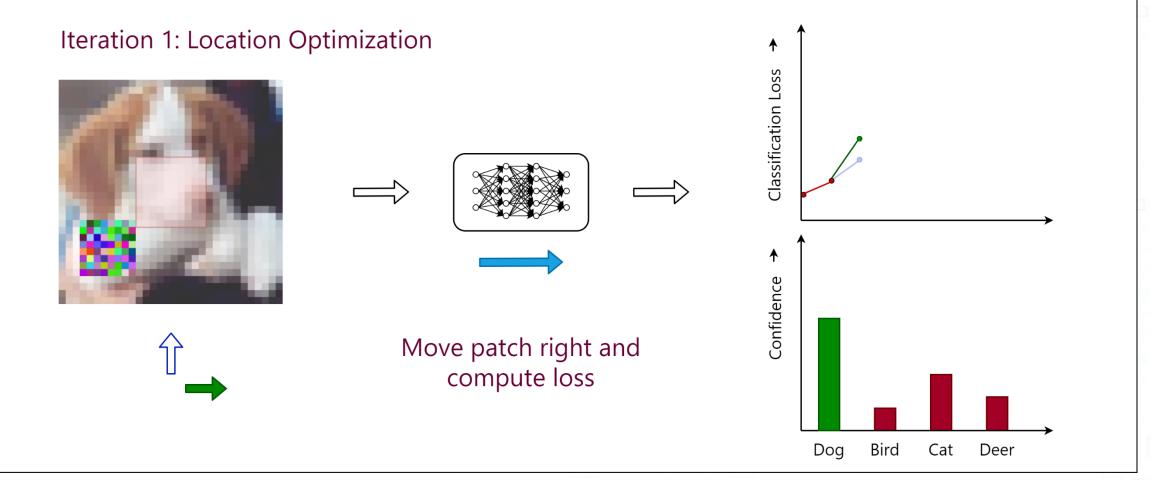


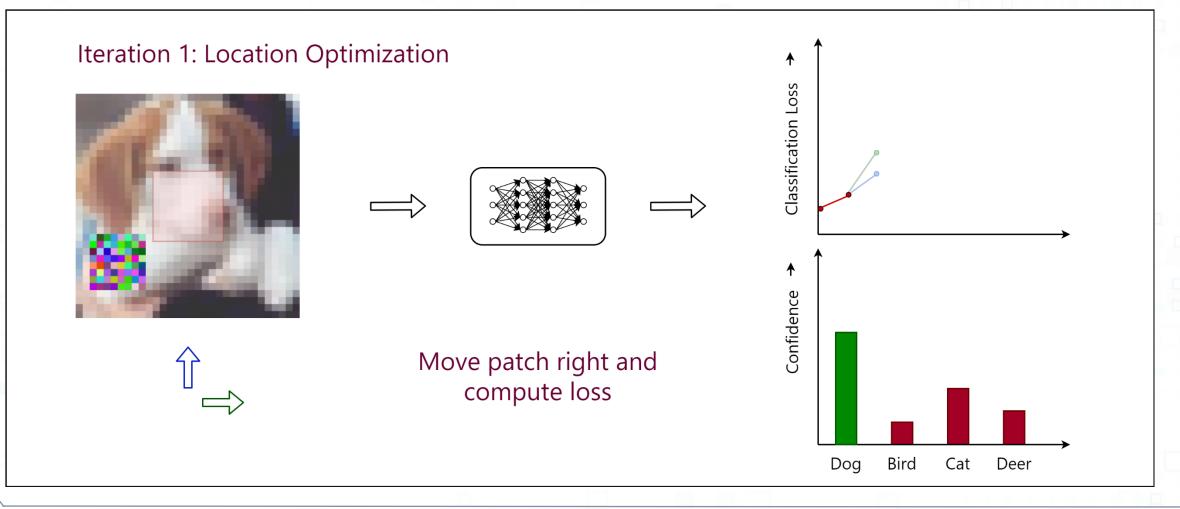


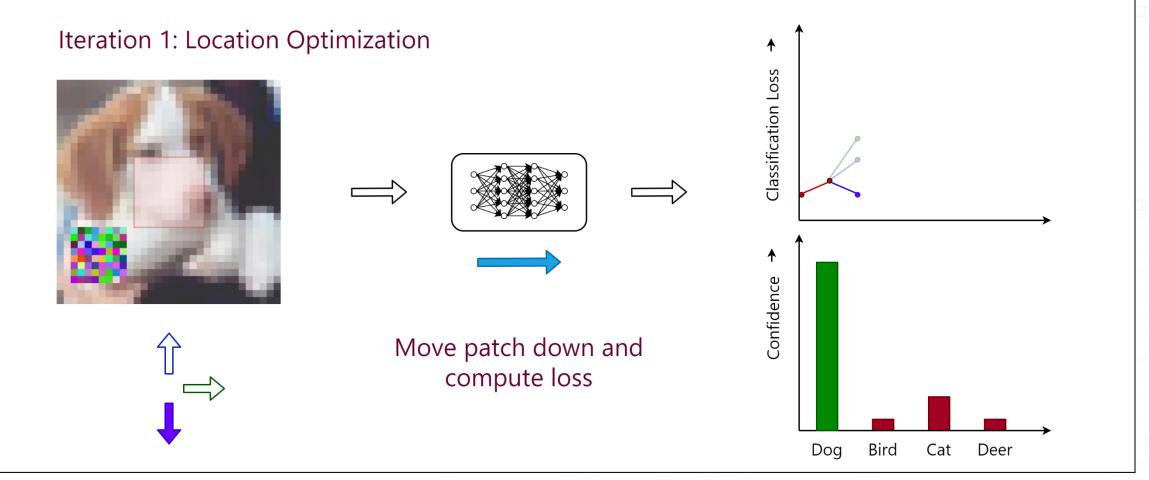
Sukrut Rao, David Stutz, Bernt Schiele | Adversarial Training against Location-Optimized Adversarial Patches

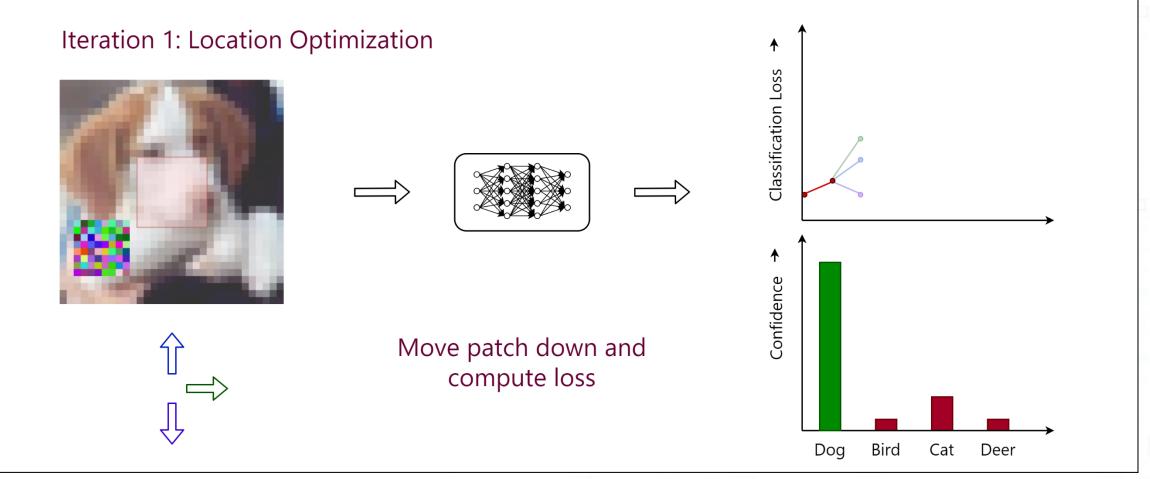


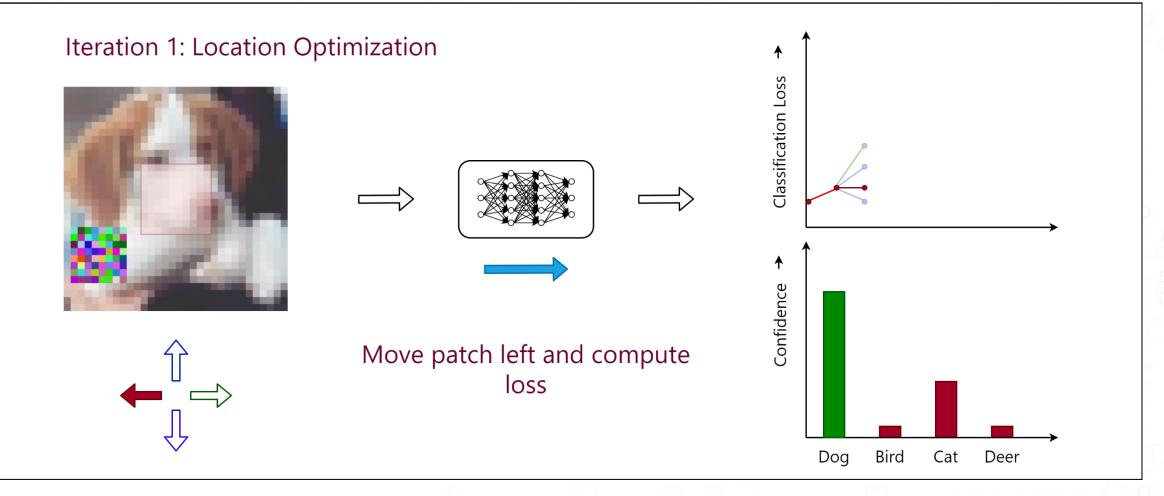


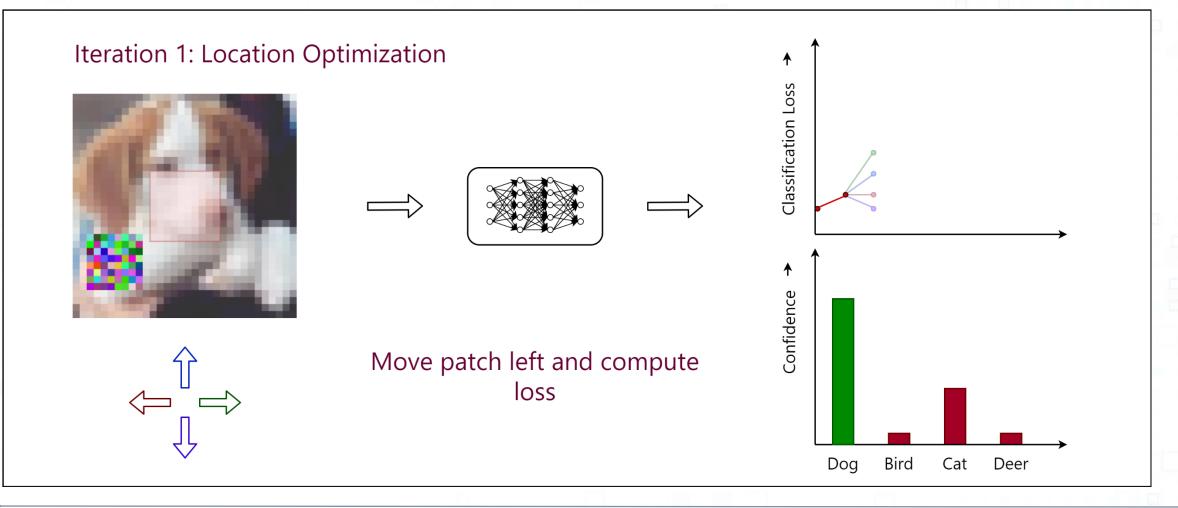


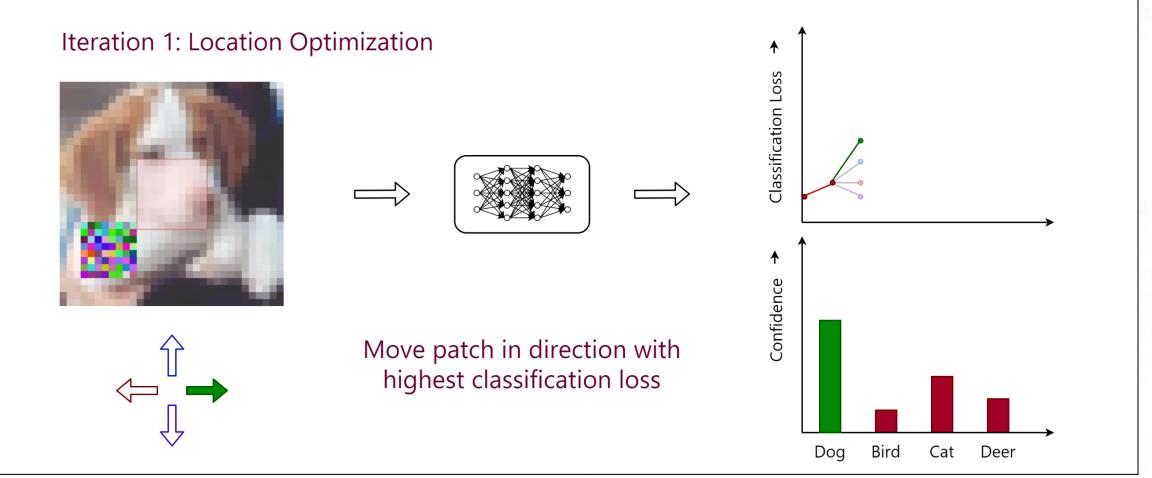




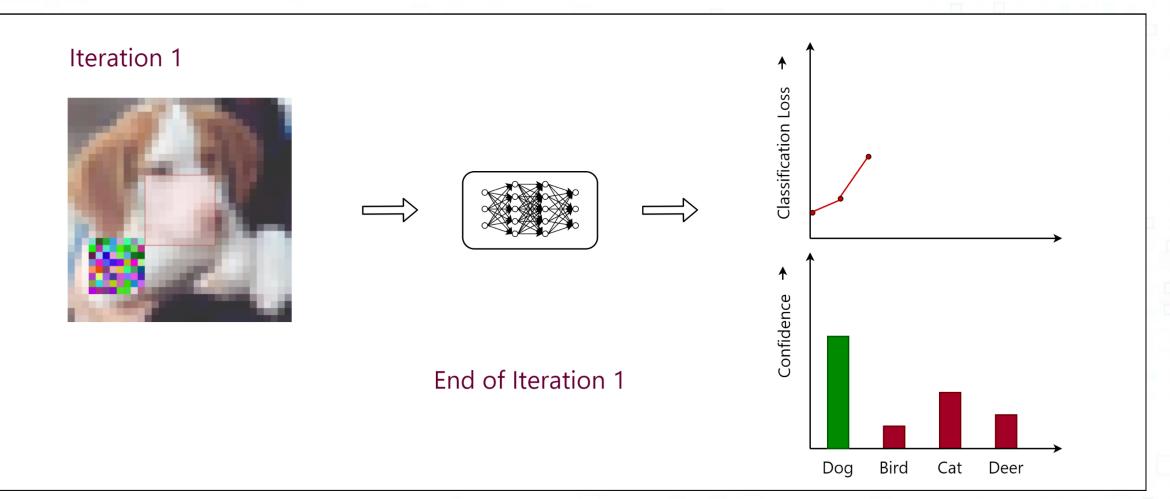




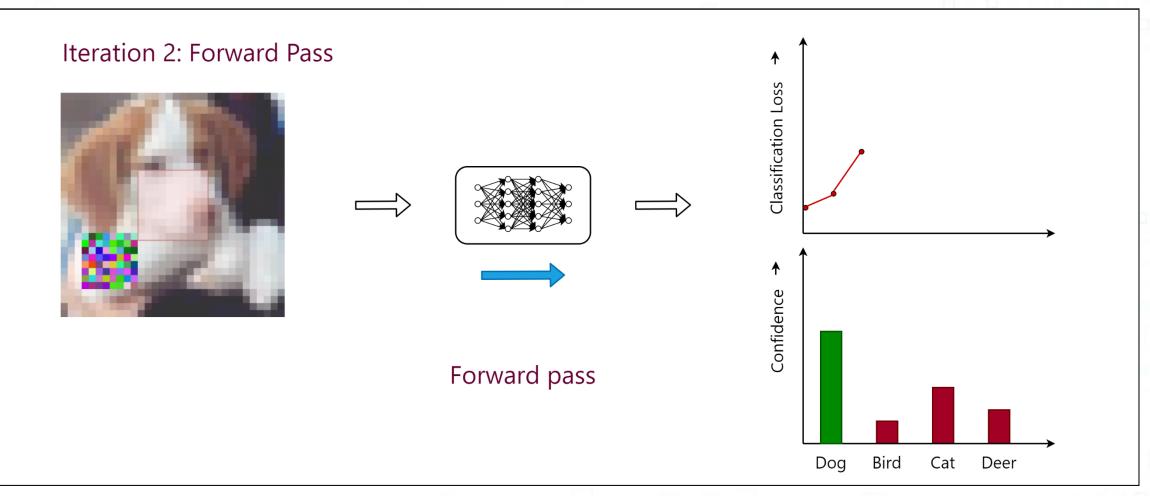




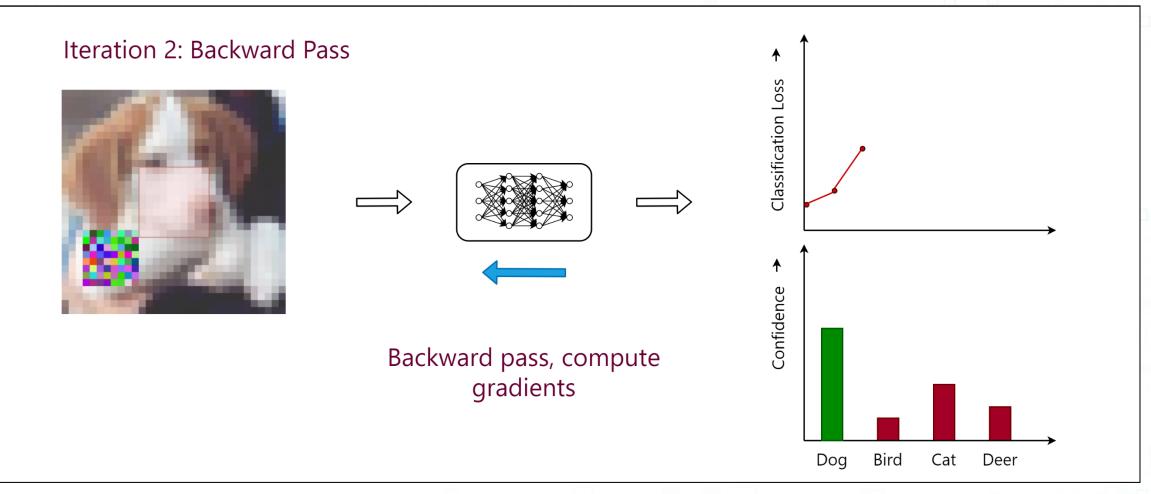
Adversarial Patch Attack



Adversarial Patch Attack: Forward Pass

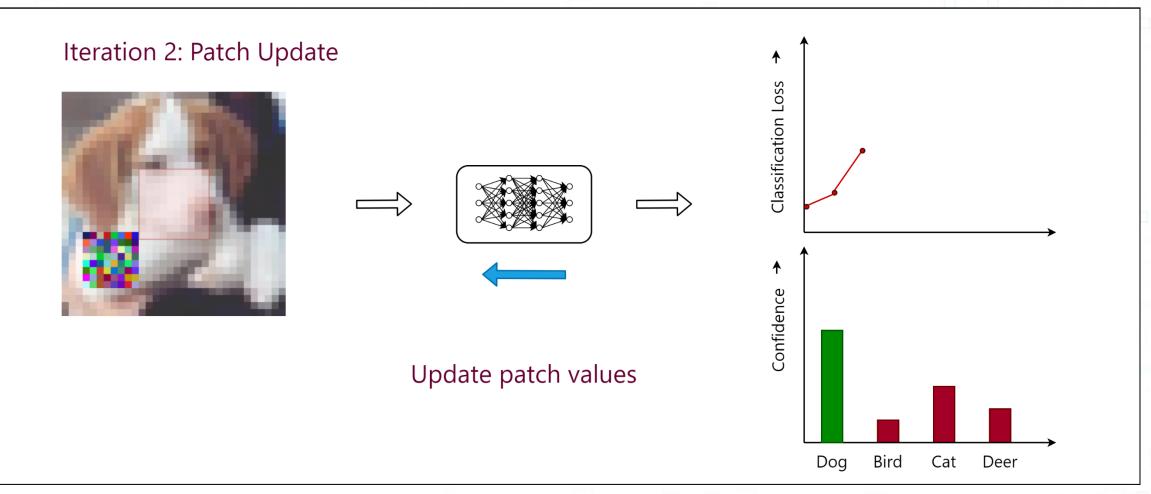


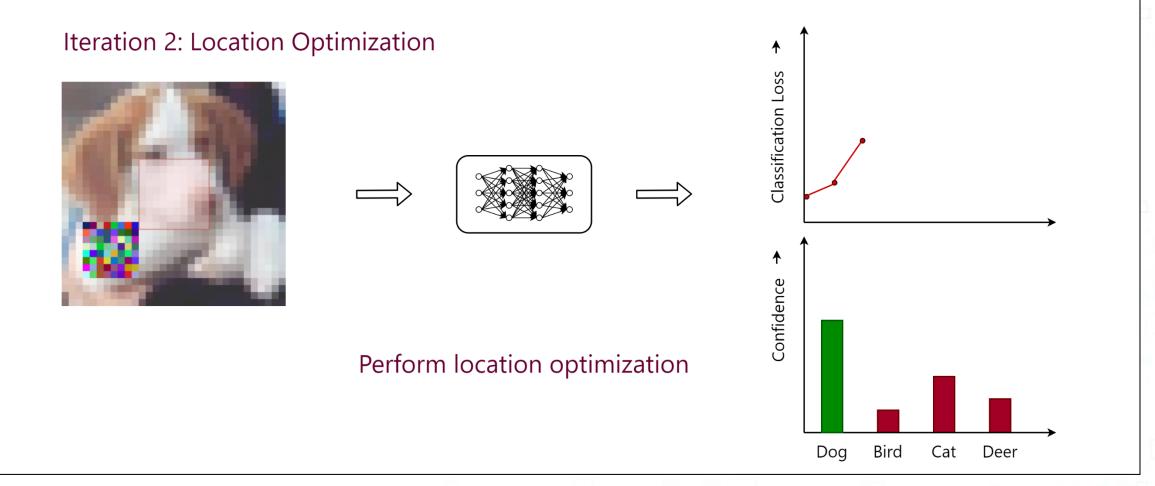
Adversarial Patch Attack: Backward Pass

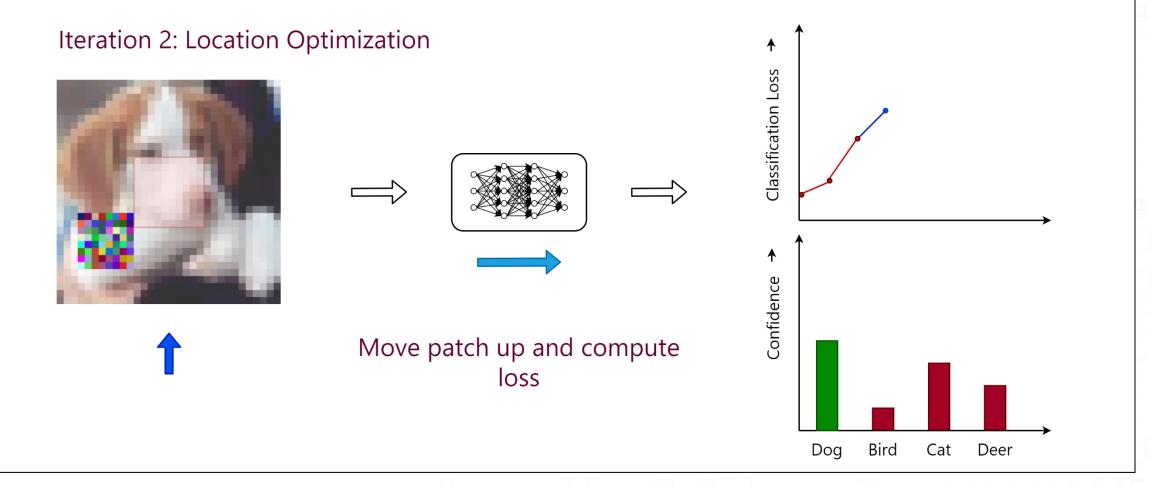


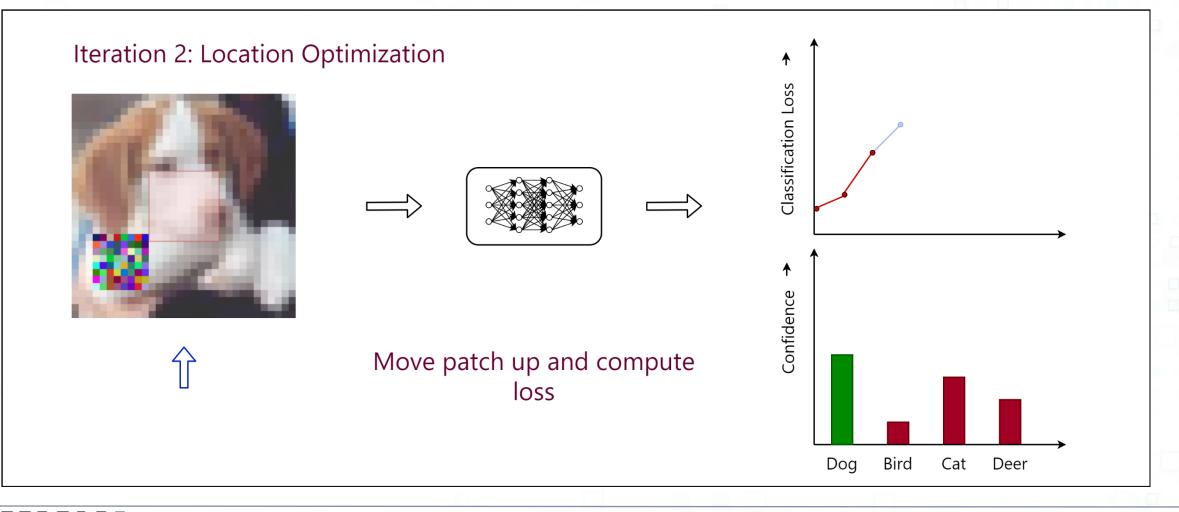
Sukrut Rao, David Stutz, Bernt Schiele | Adversarial Training against Location-Optimized Adversarial Patches

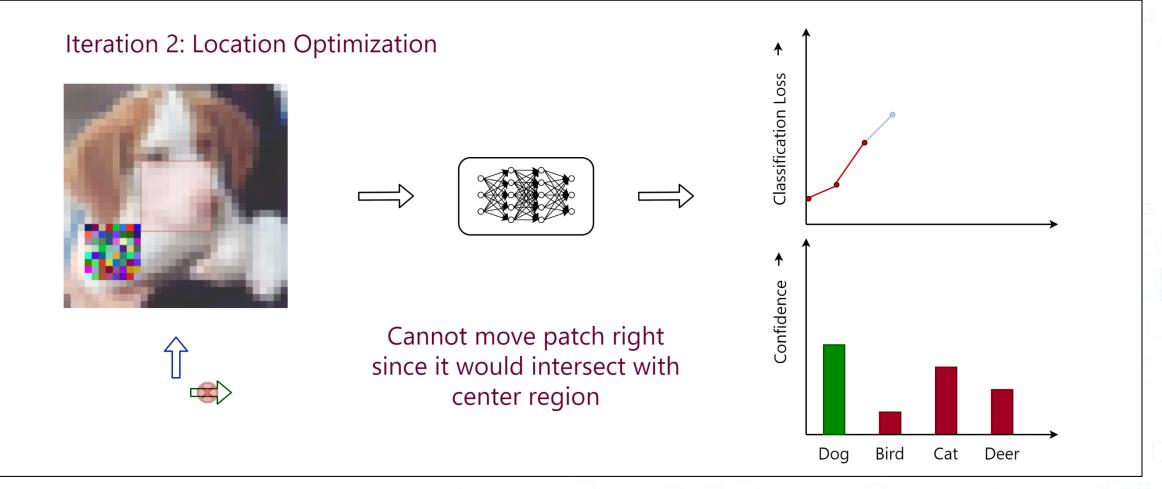
Adversarial Patch Attack: Patch Update

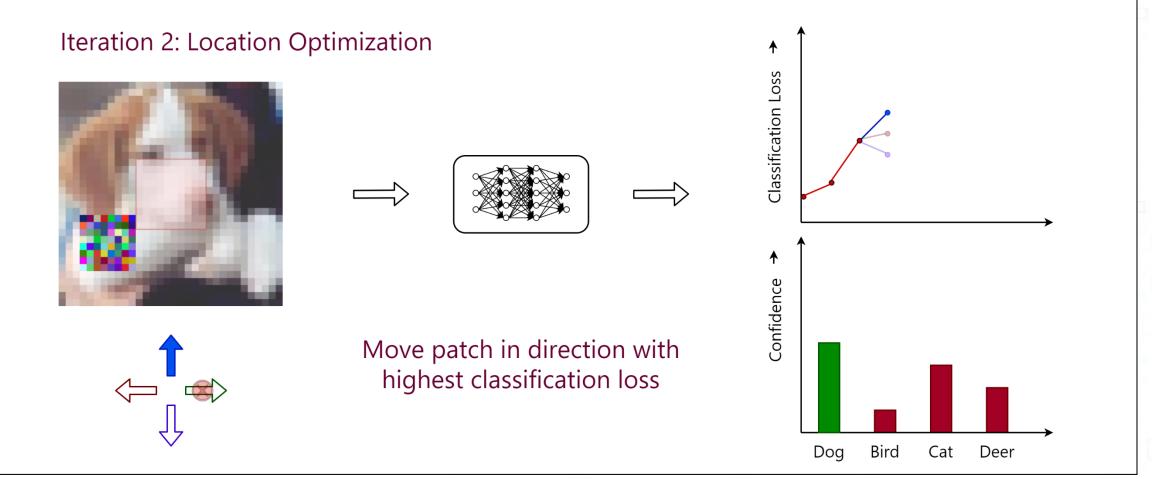








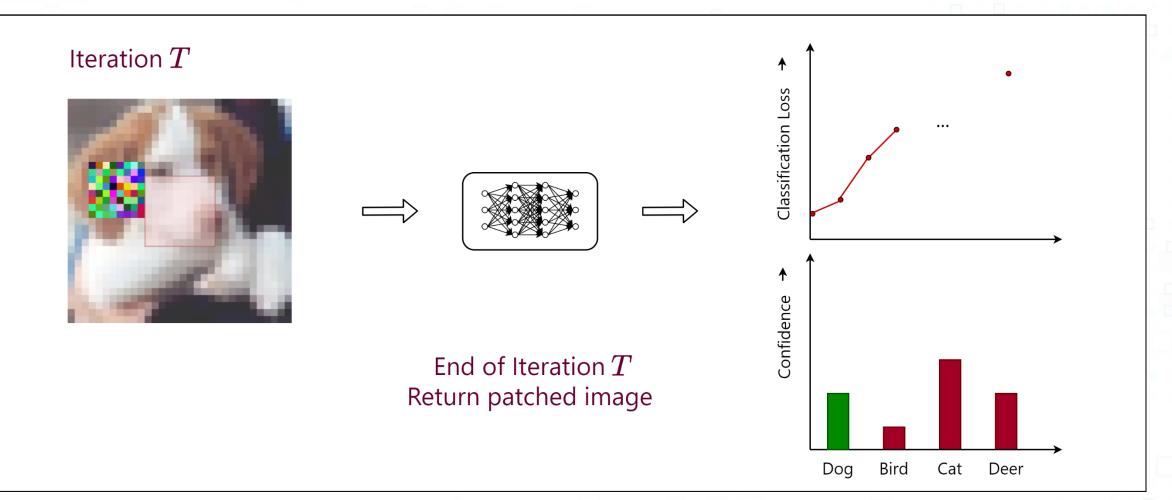




Adversarial Patch Attack



Adversarial Patch Attack



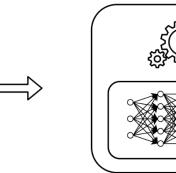
Run attack algorithm multiple times

Input Image

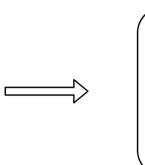
Attack Algorithm

Run attack algorithm multiple times

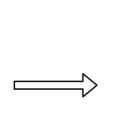
Input Image



Input Image



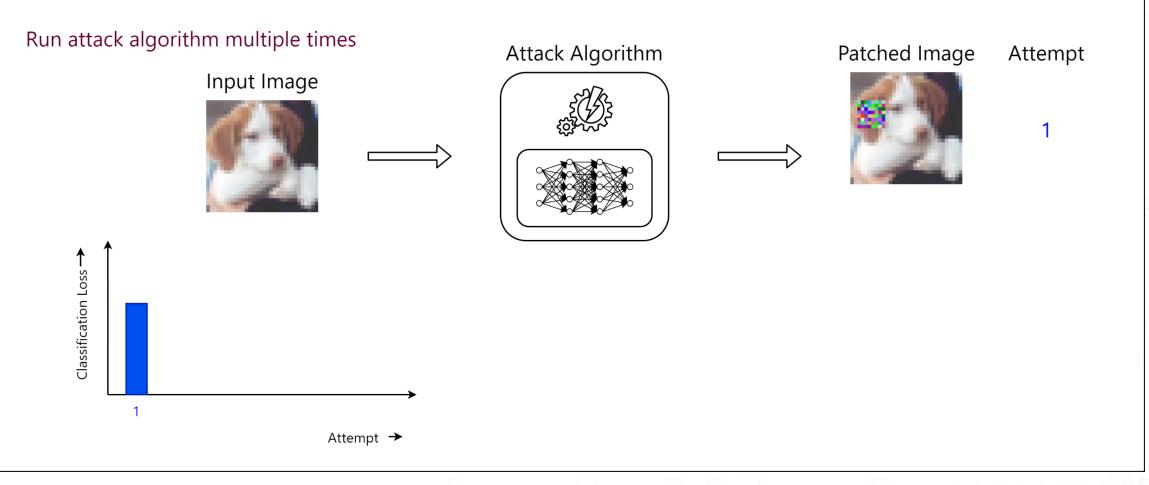
Attack Algorithm

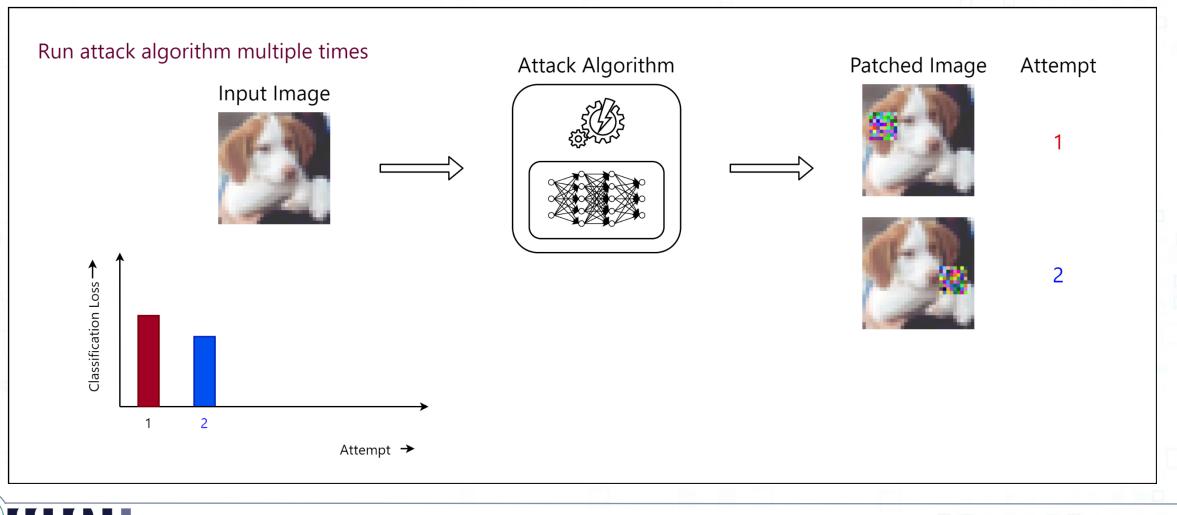


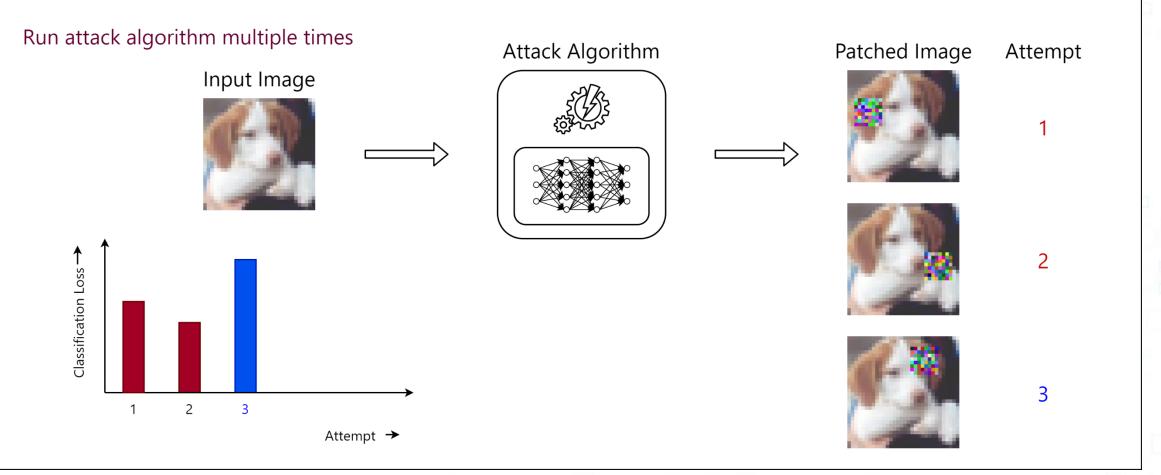
Patched Image

Attempt

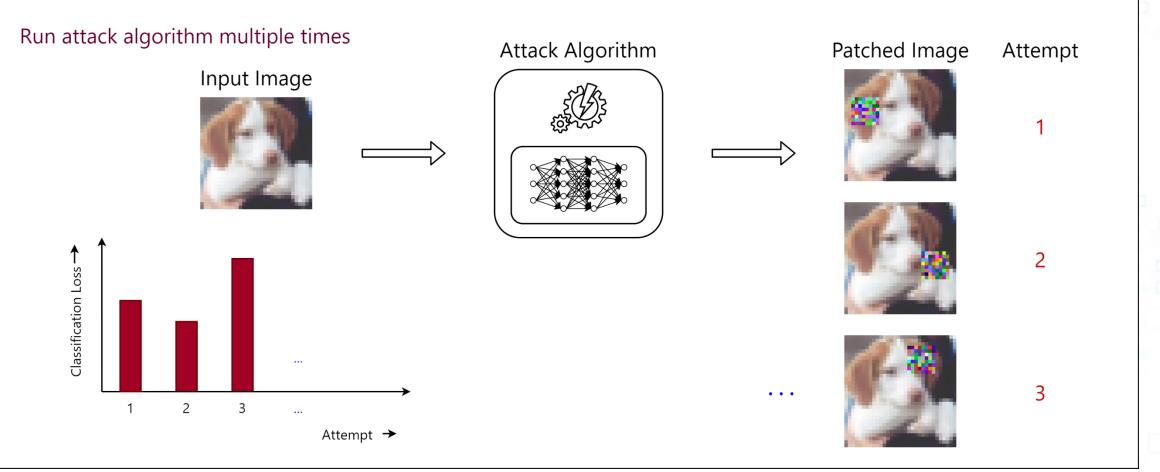
1

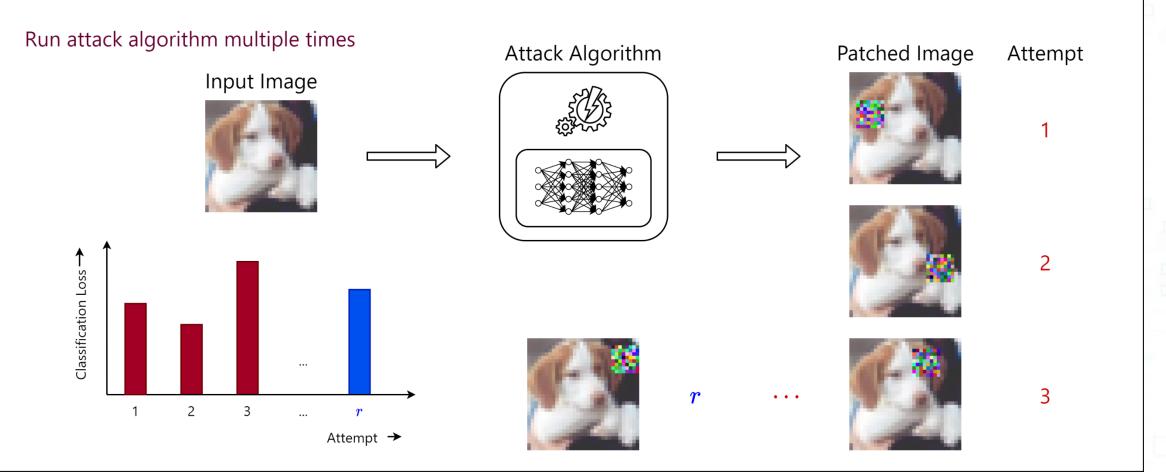




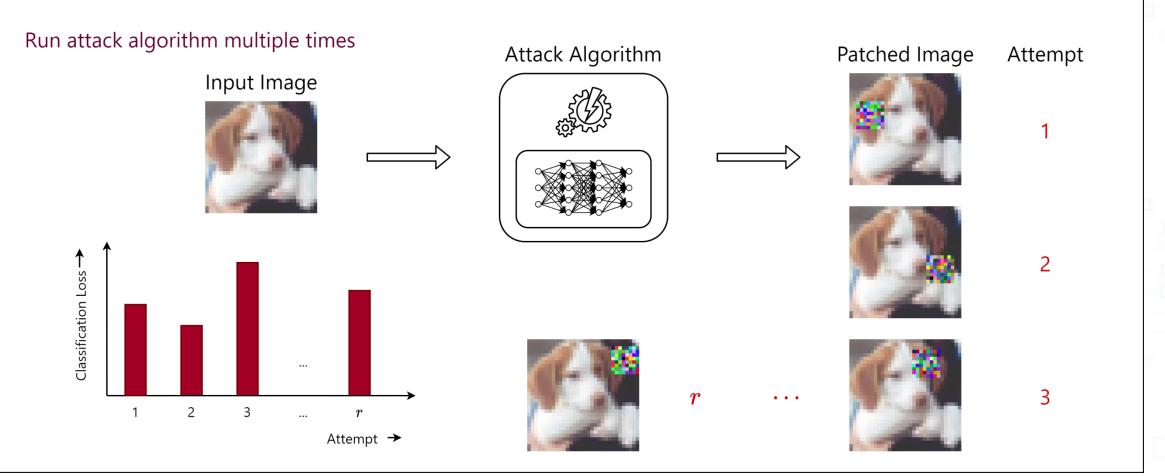


Sukrut Rao, David Stutz, Bernt Schiele | Adversarial Training against Location-Optimized Adversarial Patches

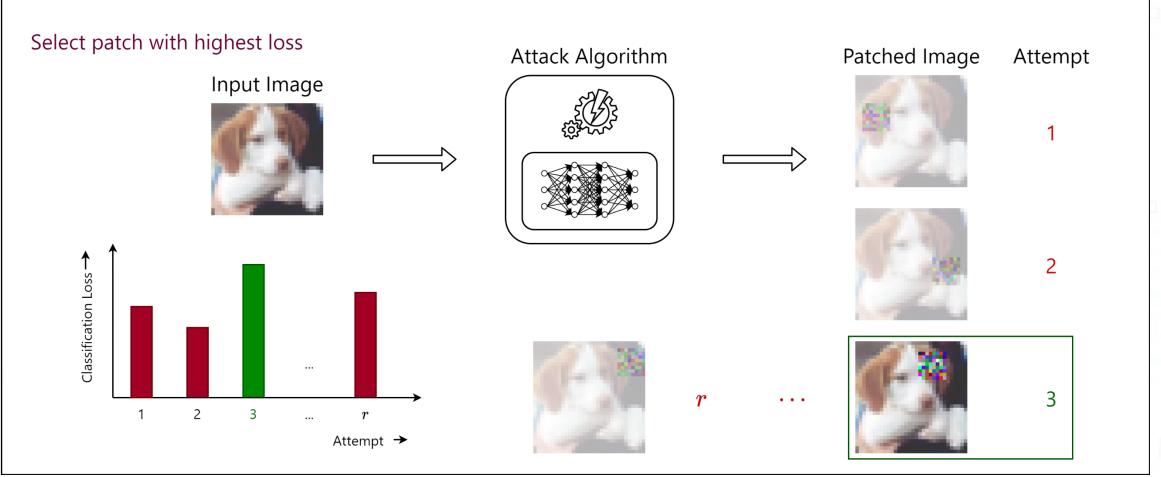




Sukrut Rao, David Stutz, Bernt Schiele | Adversarial Training against Location-Optimized Adversarial Patches



Sukrut Rao, David Stutz, Bernt Schiele | Adversarial Training against Location-Optimized Adversarial Patches



Sukrut Rao, David Stutz, Bernt Schiele | Adversarial Training against Location-Optimized Adversarial Patches

Objective: Correctly classify both clean and adversarially patched images **Optimization function:**

$$\min_{w} \left\{ \underbrace{\mathbb{E}\left[\max_{m,\delta} L(f((1-m) \odot x + m \odot \delta; w), y)\right]}_{\text{Optimize for adversarially patched images}} + \underbrace{\mathbb{E}\left[L(f(x; w), y)\right]}_{\text{Optimize for clean images}} \right\}$$

Implementation: Attack half the images in each batch when training

Adversarial Patch Training

Truck

Cat

Frog

Dog

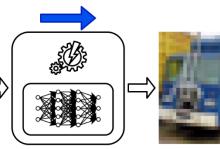
Adversarial Patch Training

Truck

Frog

Cat

Iteration 1: Attack half the images in the batch



Truck

Frog

Cat

k

Cat

Frog

Dog

Спрп

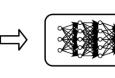
Dog

Iteration 1: Training step

Truck

Cat

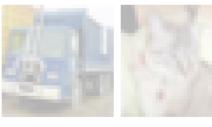
Frog



Iteration 1: Forward pass

Cat

Attack Step

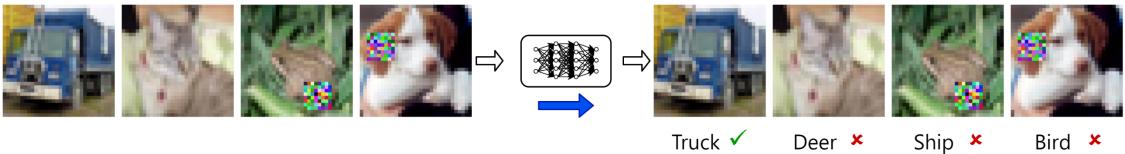


Truck

Frog

Dog

Training Step



Iteration 1: Backpropagate and update weights

Cat

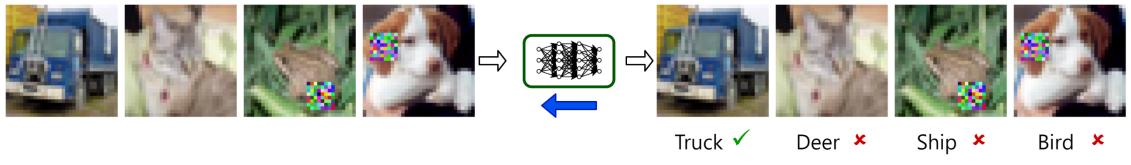
Truck

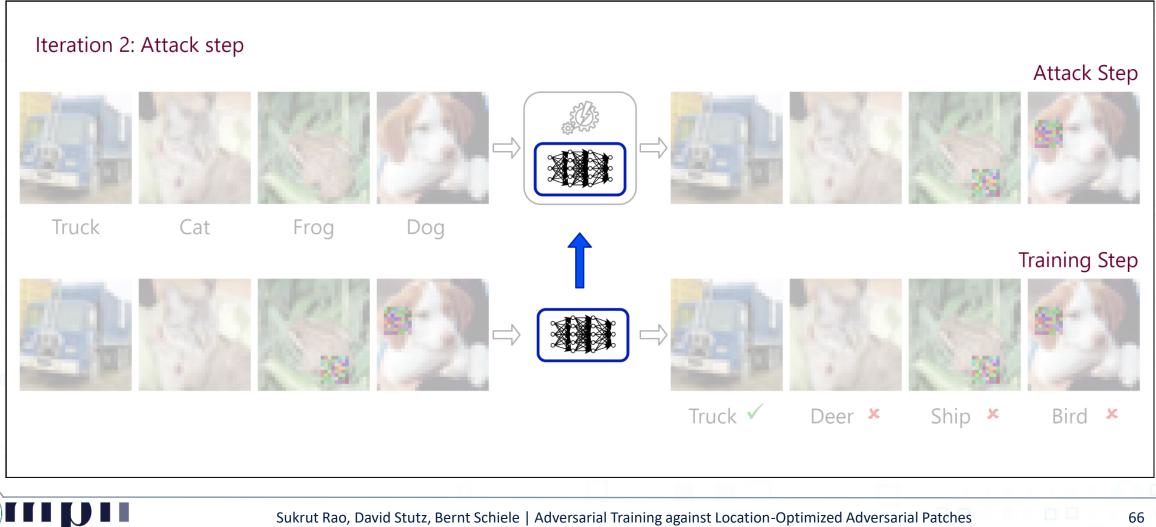
Frog

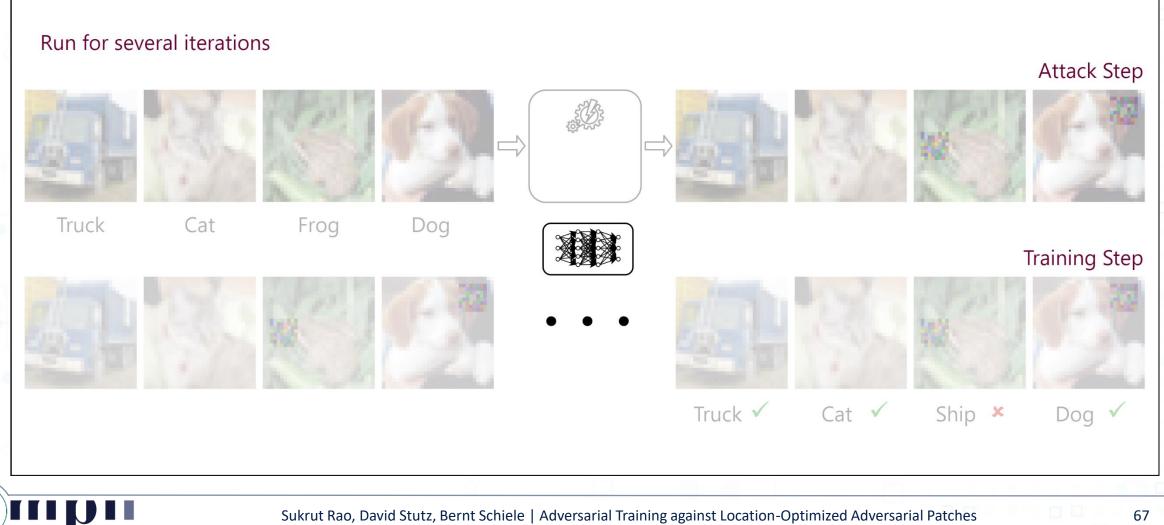
Dog

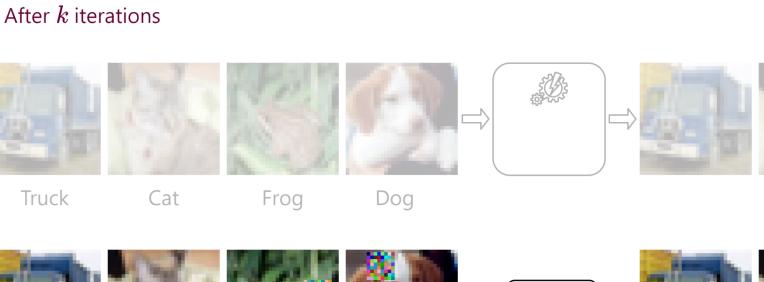
Attack Step

Training Step

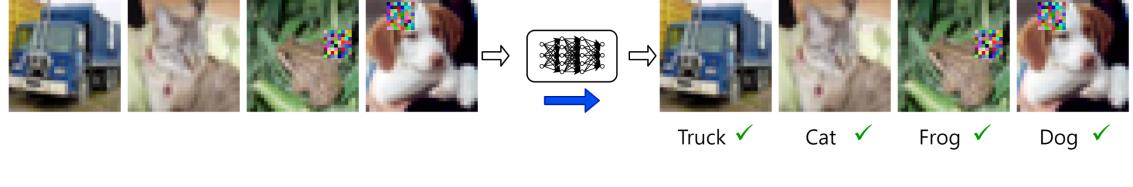








Training Step



Experimental Evaluation

- Datasets: CIFAR10, GTSRB
- Network: ResNet-20
- Patch size: 8 x 8 Attacks:
- Fixed location (AP-Fixed)
- Random location (AP-Rand)
- Random location initialization + random location optimization (AP-RandLO)

Robust Test Error

RErr in %

100

80

60

40

20

56

Patch Side Length

 $\overline{7}$

4

8 9 1011

Random location initialization + full location optimization (AP-FullLO)

Experimental Evaluation

Models: one trained per attack type

- Fixed location (AT-Fixed)
- Random location (AT-Rand)
- Random location initialization + random location optimization (AT-RandLO)
- Random location initialization + full location optimization (AT-FullLO) Attack Effort (#attempts × #iterations):
- Adversarial patch training: 25
- Evaluation of trained models: 3000

Attack Model	AP-Fixed	AP-Rand	AP-RandLO	AP-FullLO
Normal	99.9	100.0	100.0	100.0
AT-Fixed	63.4	82.1	85.5	85.1
AT-Rand	51.0	60.9	61.5	63.3
AT-RandLO	40.4	54.2	60.6	62.8
AT-FullLO	27.9	39.6	44.2	45.1

Robust Test Error (%) on CIFAR10

Attack Model	AP-Fixed	AP-Rand	AP-RandLO	AP-FullLO
Normal	99.9	100.0	100.0	100.0
AT-Fixed	63.4	82.1	85.5	85.1
AT-Rand	51.0	60.9	61.5	63.3
AT-RandLO	40.4	54.2	60.6	62.8
AT-FullLO	27.9	39.6	44.2	45.1

Robust Test Error (%) on CIFAR10

Attack Model	AP-Fixed	AP-Rand	AP-RandLO	AP-FullLO
Normal	99.9	100.0	100.0	100.0
AT-Fixed	63.4	82.1	85.5	85.1
AT-Rand	51.0	60.9	61.5	63.3
AT-RandLO	40.4	54.2	60.6	62.8
AT-FullLO	27.9	39.6	44.2	45.1

Robust Test Error (%) on CIFAR10

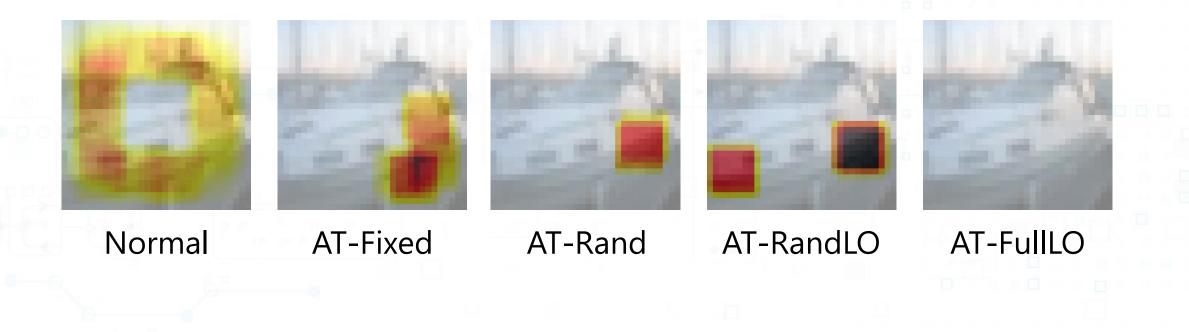
Attack Model	AP-Fixed	AP-Rand	AP-RandLO	AP-FullLO
Normal	99.9	100.0	100.0	100.0
AT-Fixed	63.4	82.1	85.5	85.1
AT-Rand	51.0	60.9	61.5	63.3
AT-RandLO	40.4	54.2	60.6	62.8
AT-FullLO	27.9	39.6	44.2	45.1

Robust Test Error (%) on CIFAR10

Model	Clean Test Error		
Normal	9.7		
AT-Fixed	10.1		
AT-Rand	9.1		
AT-RandLO	8.7		
AT-FullLO	8.8		
Clean Test Error (%) on CIFAR10			

Experimental Evaluation: Heatmaps

Adversarial patch training reduces the region where attack is successful



- Proposed adversarial patch attack with location optimization
- Location optimization strengthens attack
- Adversarial patch training with location-optimized patches improves model robustness

Resources:

- Paper: https://arxiv.org/abs/2005.02313
- Code: https://github.com/sukrutrao/adversarial-patch-training
- Contact: sukrut.rao@mpi-inf.mpg.de

