Fast Dawid-Skene: A Fast Vote Aggregation Scheme for Sentiment Classification

Vaibhav B Sinha, Sukrut Rao, Vineeth N Balasubramanian Department of Computer Science and Engineering Indian Institute of Technology Hyderabad

KDD WISDOM '18
https://sites.google.com/view/fast-dawid-skene/
https://github.com/GoodDeeds/Fast-Dawid-Skene/

Introduction

Applications of supervised machine learning

- Image classification
- Sentiment/Opinion classification from text/media
- Object detection
- etc.

Key: lots of labeled data

Introduction

- Getting labeled data for classification tasks
- Expensive
- Time-consuming
- May require specialized domain knowledge (eg. Medicine)

Introduction

- Getting labeled data for classification tasks
- Expensive
- Time-consuming
- May require specialized domain knowledge (eg. Medicine)
- Possible solution: crowdsource labels
- Obtain labels for each data point from a group of non-experts
- Apply aggregation algorithm to estimate true label

Introduction

- Getting labeled data for classification tasks
- Expensive
- Time-consuming
- May require specialized domain knowledge (eg. Medicine)
- Possible solution: crowdsource labels
- Obtain labels for each data point from a group of non-experts
- Apply aggregation algorithm to estimate true label
- Simple aggregation algorithm: Majority Voting
- Estimate label chosen by majority of aggregators

Introduction

- Crowdsourced aggregation
- Not all annotators are equally reliable
- Some data points are difficult to label

Majority Voting does not take these characteristics into account

Can we do better?

Existing Techniques: Dawid-Skene

- Dawid-Skene algorithm [Dawid and Skene, 1979]
- EM algorithm
- Efficient and widely used till date
- Dawid-Skene takes time to converge - increases with increasing dataset sizes
- Fast, real-time sentiment analysis required
- Proposals
- Iterated Weighted Majority Voting (IWMV) [Li and Yu, 2014]
- Fast Dawid-Skene (FDS) (ours)

Problem Setting

- Each data-point (question) has exactly one true label (option), from a fixed set of choices.
- Participants (annotators) provide labels for questions.
- Each participant chooses one option per question.
- A participant may answer only a subset of questions.
- Each question is presented to multiple participants.
- Task: Aggregate the label chosen by the participants for each question to estimate the true label.

Fast Dawid-Skene

	Q1 (b)	Q2 (a)	Q3 (b)	Q4 (a)	Q5 (a)
P1	a	a	b	a	a
P2	b	b	b	a	a
P3	a	b	a	b	b

Fast Dawid-Skene: Majority Voting

	Q1	Q2	Q3	Q4	Q5
P1	a	a	b	a	a
P2	b	b	b	a	a
P3	a	a	b	b	
MV	a				

Fast Dawid-Skene: Majority Voting

	Q1	Q2	Q3	Q4	Q5
P1	a	a	b	a	a
P2	b	b	b	a	a
P3	a	b	a	b	b
MV	a	b	b	a	

First E step: Majority Voting

Fast Dawid-Skene

	Q1	Q2	Q3	Q4	Q5
P1	a	a	b	a	a
P2	b	b	b	a	a
P3	a	b	a	b	b
MV	a	b	b	a	a

First M step

The fraction:
Number of questions answered by P1 whose correct answer was a and (s)he chose a
Number of questions answered by P1 whose answer was a

$$
=3 / 3=1
$$

Fast Dawid-Skene

	Q1	Q2	Q3	Q4	Q5
P1	a	a	b	a	a
P2	b	b	b	a	a
P3	a	b	a	b	b
MV	a	b	b	a	a

First M step

The fraction:
Number of questions answered by P1 whose correct answer was a and (s)he chose a
Number of questions answered by P1 whose answer was a

$$
=3 / 3=1
$$

	\mathbf{a}	\mathbf{b}
\mathbf{a}	1	
\mathbf{b}		

Fast Dawid-Skene

	Q1	Q2	Q3	Q4	Q5
P1	a	a	b	a	a
P2	b	b	b	a	a
P3	a	b	a	b	b
MV	a	b	b	a	a

First M step

Similarly complete the table for P1

	\mathbf{a}	\mathbf{b}
\mathbf{a}	1	0
\mathbf{b}	0.5	0.5

Fast Dawid-Skene

	Q1	Q2	Q3	Q4	Q5
P1	a	a	b	a	a
P2	b	b	b	a	a
P3	a	b	a	b	b
MV	a	b	b	a	a

First M step

Similarly complete the table for P2 and P3

P1	\mathbf{a}	\mathbf{b}
\mathbf{a}	1	0
\mathbf{b}	0.5	0.5

P2	\mathbf{a}	\mathbf{b}
\mathbf{a}	0.67	0.33
\mathbf{b}	0	1

P3	\mathbf{a}	\mathbf{b}
\mathbf{a}	0.33	0.67
\mathbf{b}	0.5	0.5

Fast Dawid-Skene

	Q1	Q2	Q3	Q4	Q5
P1	a	a	b	a	a
P2	b	b	b	a	a
P3	a	b	a	b	b
MV	a	b	b	a	a

First M step

Also calculate the probabilities of each option being correct (priors)

P1	a	\mathbf{b}	$\mathbf{P 2}$	\mathbf{a}	\mathbf{b}
\mathbf{a}	1	0			
\mathbf{b}	0.5	0.5	\mathbf{a}	0.67	0.33
	\mathbf{b}	0	1		

\mathbf{a}	0.6
\mathbf{b}	0.4

P3	\mathbf{a}	\mathbf{b}
\mathbf{a}	0.33	0.67
\mathbf{b}	0.5	0.5

Fast Dawid-Skene

	Q1	Q2	Q3	Q4	Q5
P1	a	a	b	a	a
P2	b	b	b	a	a
P3	a	b	a	b	b
MV	a	b	b	a	a

Second E step

Now we reestimate the answers for each questions.

P1	\mathbf{a}	\mathbf{b}	$\mathbf{P 2}$	\mathbf{a}	\mathbf{b}
\mathbf{a}	1	0	\mathbf{a}	0.67	0.33
\mathbf{b}	0.5	0.5	\mathbf{b}	0	1

| P3 | \mathbf{a} | \mathbf{b} | \mathbf{a} 0.6
 \mathbf{a} 0.33
 \mathbf{b} 0.67
 \mathbf{b} 0.5 $\mathbf{0 . 5}$ |
| :--- | :--- | :--- | :--- | :--- |

Fast Dawid-Skene

	Q1	Q2	Q3	Q4	Q5
P1	a	a	b	a	a
P2	b	b	b	a	a
P3	a	b	a	b	b
MV	a	b	b	a	a

Second E step

Now we reestimate the answers for each questions.

Probability that answer to first question is a:

$$
\begin{gathered}
\text { (Prior) } 0.6 \times 1 \times 0.33 \times 0.33 \\
=0.067
\end{gathered}
$$

Fast Dawid-Skene

	Q1	Q2	Q3	Q4	Q5
P1	a	a	b	a	a
P2	b	b	b	a	a
P3	a	b	a	b	b
MV	a	b	b	a	a

Second E step

Now we reestimate the answers for each questions.

P1	\mathbf{a}	\mathbf{b}
\mathbf{a}	1	0
\mathbf{b}	0.5	0.5

P2	\mathbf{a}	\mathbf{b}
\mathbf{a}	0.67	0.33
\mathbf{b}	0	1

P3	\mathbf{a}	\mathbf{b}
\mathbf{a}	0.33	0.67
\mathbf{b}	0.5	0.5

\mathbf{a}	0.6
\mathbf{b}	0.4

Similarly probability that answer to first question is b :

$$
\text { (Prior) } 0.4 \times 0.5 \times 1 \times 0.5=0.1
$$

Fast Dawid-Skene

	Q1	Q2	Q3	Q4	Q5
P1	a	a	b	a	a
P2	b	b	b	a	a
P3	a	b	a	b	b
MV	a	b	b	a	a

Second E step

Now we reestimate the answers for each questions.

P1	\mathbf{a}	\mathbf{b}
\mathbf{a}	1	0
\mathbf{b}	0.5	0.5

P2	\mathbf{a}	\mathbf{b}
\mathbf{a}	0.67	0.33
\mathbf{b}	0	1

P3	\mathbf{a}	\mathbf{b}
\mathbf{a}	0.33	0.67
\mathbf{b}	0.5	0.5

\mathbf{a}	0.6
\mathbf{b}	0.4

Similarly probability that answer to first question is b : (Prior) $0.4 \times 0.5 \times 1 \times 0.5=0.1$

Thus (b) becomes the answer

Fast Dawid Skene

	Q1 (b)	Q2 (a)	Q3 (b)	Q4 (a)	Q5 (a)
P1	a	a	b	a	a
P2	b	b	b	a	a
P3	a	b	a	b	b
MV (First E step)	a	b	b	a	a
After 2 E steps	b	a	b	a	a

Fast Dawid Skene

	Q1 (b)	Q2 (a)	Q3 (b)	Q4 (a)	Q5 (a)
P1	a	a	b	a	a
P2	b	b	b	b	a
P3	a	b	b	a	
MV (First E step)	a	a	a	b	
After 2 E steps	b	a	b	a	a
After 3 steps	b	a	a		

Fast Dawid Skene

	Q1 (b)	Q2 (a)	Q3 (b)	Q4 (a)	Q5 (a)
P1	a	a	b	a	a
P2	b	b	b	a	a
P3	a	b	a	b	b
MV (First E step)	a	b	b	a	a
After 2 E steps	b	a	b	a	a
After 3 steps	b	a	b	a	a

The algorithm converges.

Fast Dawid Skene Algorithm

- E step: Estimate the answers to the questions
- C step: Give the 'hard' estimates.
- M step: Compute the parameters.

Dawid-Skene Algorithm
Fast Dawid-Skene Algorithm

Guarantees for Convergence

Theorem 1:

Fast Dawid-Skene converges to a stationary point.

Guarantees for Convergence

Theorem 1:

Fast Dawid-Skene converges to a stationary point.

Theorem 2:

If the algorithm is started from an area close to a local maximum of the likelihood, Fast Dawid-Skene is guaranteed to converge to the maximum at a linear rate.

More details in our paper

Improvement: Hybrid Algorithm

- FDS: Empirical Observations
- Likelihood is not maximized to the same extent as DS
- DS converges to a better maxima
- Proposal: Hybrid algorithm
- Start with DS
- Switch to FDS after difference in priors is below a certain threshold
- Best of both worlds - procedure of DS, speed of FDS

Extensions to FDS

- Online FDS

- Online setting: Initial set of questions and annotations available, new questions with annotations become available with time
- Perform aggregation as questions arrive, using information from past data
- Multiple Answers Correct
- Assumption: truth value of each option is independent
- Treat each question-option pair as a separate binary question
- Run FDS/Hybrid algorithm on each question-option pair

Experiments and Results

- Experiments: Comparison of DS, FDS, Hybrid, MV, IWMV, and GLAD [Whitehill et al., 2009] across seven real-world datasets
- Results
- 3.00x - 7.84x speed of FDS compared to DS
- $1.49 x-5.15 x$ speed of Hybrid compared to DS
- $0.54 x-6.09 x$ speed of FDS compared IWMV

Results: Sentiment Polarity Dataset

\longrightarrow DS \quad IWMV - MV \square FDS \triangle Hybrid
Questions: 4968, Options per question: 2, Maximum number of annotators per question: 5

Thank you

Questions?

