

Fast Dawid-Skene: A Fast Vote Aggregation Scheme for Sentiment Classification

Vaibhav B Sinha, Sukrut Rao, Vineeth N Balasubramanian Department of Computer Science and Engineering Indian Institute of Technology Hyderabad

KDD WISDOM '18

https://sites.google.com/view/fast-dawid-skene/

https://github.com/GoodDeeds/Fast-Dawid-Skene/

Applications of supervised machine learning

- Image classification
- Sentiment/Opinion classification from text/media
- Object detection
- etc.

Key: lots of labeled data

भारतीय प्रौद्योगिकी संस्थान हैदराबाद Indian Institute of Technology Hyderabad

Introduction

- Getting labeled data for classification tasks
 - Expensive
 - Time-consuming
 - May require specialized domain knowledge (eg. Medicine)

- Getting labeled data for classification tasks
 - Expensive
 - Time-consuming
 - May require specialized domain knowledge (eg. Medicine)
- Possible solution: crowdsource labels
 - Obtain labels for each data point from a group of non-experts
 - Apply aggregation algorithm to estimate true label

- Getting labeled data for classification tasks
 - Expensive
 - Time-consuming
 - May require specialized domain knowledge (eg. Medicine)
- Possible solution: crowdsource labels
 - Obtain labels for each data point from a group of non-experts
 - Apply aggregation algorithm to estimate true label
- Simple aggregation algorithm: Majority Voting
 - Estimate label chosen by majority of aggregators

- Crowdsourced aggregation
 - Not all annotators are equally reliable
 - Some data points are difficult to label

Majority Voting does not take these characteristics into account

Can we do better?

Existing Techniques: Dawid-Skene

- Dawid-Skene algorithm [Dawid and Skene, 1979]
 - EM algorithm
 - Efficient and widely used till date
- Dawid-Skene takes time to converge increases with increasing dataset sizes
- Fast, real-time sentiment analysis required
- Proposals
 - Iterated Weighted Majority Voting (IWMV) [Li and Yu, 2014]
 - Fast Dawid-Skene (FDS) (ours)

Problem Setting

- Each data-point (question) has exactly one true label (option), from a fixed set of choices.
- Participants (annotators) provide labels for questions.
- Each participant chooses one option per question.
- A participant may answer only a subset of questions.
- Each question is presented to multiple participants.
- Task: Aggregate the label chosen by the participants for each question to estimate the true label.

	Q1 (b)	Q2 (a)	Q3 (b)	Q4 (a)	Q5 (a)
P1	а	а	b	а	а
P2	b	b	b	а	а
Р3	а	b	а	b	b

Fast Dawid-Skene: Majority Voting

	Q1	Q2	Q3	Q4	Q5
P1	а	а	b	а	а
P2	b	b	b	а	а
Р3	а	b	а	b	b
MV	а				

Fast Dawid-Skene: Majority Voting

	Q1	Q2	Q3	Q4	Q5
P1	а	а	b	а	а
P2	b	b	b	а	а
P3	а	b	а	b	b
MV	а	b	b	а	а

First E step: Majority Voting

	Q1	Q2	Q3	Q4	Q5
P1	а	а	b	а	а
P2	b	b	b	а	а
P3	а	b	а	b	b
MV	а	b	b	а	а

First M step

The fraction: Number of questions answered by P1 whose correct answer was a and (s)he chose a

Number of questions answered by P1 whose answer was a

= 3 / 3 = 1

	Q1	Q2	Q3	Q4	Q5
P1	а	а	b	а	а
P2	b	b	b	а	а
P3	а	b	а	b	b
MV	а	b	b	а	а

First M step

The fraction: Number of questions answered by P1 whose correct answer was a and (s)he chose a

Number of questions answered by P1 whose answer was a

	а	b
а	1	
b		

	Q1	Q2	Q3	Q4	Q5
P1	а	а	b	а	а
P2	b	b	b	а	а
P3	а	b	а	b	b
MV	а	b	b	а	а

First M step

Similarly complete the table for P1

	а	b
а	1	0
b	0.5	0.5

First M step

Similarly complete the table for P2 and P3

P1	а	b	P2	а	b
а	1	0	а	0.67	0.33
b	0.5	0.5	b	0	1

P3	а	b
а	0.33	0.67
b	0.5	0.5

	Q1	Q2	Q3	Q4	Q5
P1	а	а	b	а	а
P2	b	b	b	а	а
P3	а	b	а	b	b
MV	а	b	b	а	а

First M step

Also calculate the probabilities of each option being correct (priors)

P1	а	b	P2	а	b
а	1	0	а	0.67	0.33
b	0.5	0.5	b	0	1

а	0.6
b	0.4

Р3	а	b
а	0.33	0.67
b	0.5	0.5

	Q1	Q2	Q3	Q4	Q5
P1	а	а	b	а	а
P2	b	b	b	а	а
P3	а	b	а	b	b
MV	а	b	b	а	а

Second E step

Now we reestimate the answers for each questions.

P1	а	b	P2	а	b
а	1	0	а	0.67	0.33
b	0.5	0.5	b	0	1

P3	а	b	а	0.6
а	0.33	0.67	b	0.4
b	0.5	0.5		

	Q1	Q2	Q3	Q4	Q5
P1	а	а	b	а	а
P2	b	b	b	а	а
P3	а	b	а	b	b
MV	а	b	b	а	а

P1	а	b	P2	а	b
а	1	0	а	0.67	0.33
b	0.5	0.5	b	0	1

P3

а

b

0.5

0.5

а	b	а	0.6
0.33	0.67	b	0.4

Second E step

Now we reestimate the answers for each questions.

Probability that answer to first question is a:

(Prior) 0.6 x 1 x 0.33 x 0.33 = 0.067

	Q1	Q2	Q3	Q4	Q5
P1	а	а	b	а	а
P2	b	b	b	а	а
P3	а	b	а	b	b
MV	а	b	b	а	а

P1	а	b	P2	а	b
а	1	0	а	0.67	0.33
b	0.5	0.5	b	0	1

0.6

0.4

Р3	а	b	а
а	0.33	0.67	b
b	0.5	0.5	

Second E step

Now we reestimate the answers for each questions.

Probability that answer to first question is a:

(Prior) 0.6 x 1 x 0.33 x 0.33 = 0.067

Similarly probability that answer to first question is b: (Prior) $0.4 \times 0.5 \times 1 \times 0.5 = 0.1$

	Q1	Q2	Q3	Q4	Q5
P1	а	а	b	а	а
P2	b	b	b	а	а
P3	а	b	а	b	b
MV	а	b	b	а	а

P1	а	b	P2	а	b
а	1	0	а	0.67	0.33
b	0.5	0.5	b	0	1

P3	а	b	а	0.6
а	0.33	0.67	b	0.4
b	0.5	0.5		

Second E step

Now we reestimate the answers for each questions.

Probability that answer to first question is a:

(Prior) 0.6 x 1 x 0.33 x 0.33 = 0.067

Similarly probability that answer to first question is b: (Prior) $0.4 \times 0.5 \times 1 \times 0.5 = 0.1$

Thus (b) becomes the answer

	Q1 (b)	Q2 (a)	Q3 (b)	Q4 (a)	Q5 (a)
P1	а	а	b	а	а
P2	b	b	b	а	а
P3	а	b	а	b	b
MV (First E step)	а	b	b	а	а
After 2 E steps	b	а	b	а	а

	Q1 (b)	Q2 (a)	Q3 (b)	Q4 (a)	Q5 (a)
P1	а	а	b	а	а
P2	b	b	b	а	а
P3	а	b	а	b	b
MV (First E step)	а	b	b	а	а
After 2 E steps	b	а	b	а	а
After 3 steps	b	а	b	а	а

	Q1 (b)	Q2 (a)	Q3 (b)	Q4 (a)	Q5 (a)
P1	а	а	b	а	а
P2	b	b	b	а	а
P3	а	b	а	b	b
MV (First E step)	а	b	b	а	а
After 2 E steps	b	а	b	а	а
After 3 steps	b	а	b	а	а

The algorithm converges.

Fast Dawid Skene Algorithm

- E step: Estimate the answers to the questions
- C step: Give the 'hard' estimates.
- M step: Compute the parameters.

Fast Dawid-Skene Algorithm

Dawid-Skene Algorithm

Guarantees for Convergence

Theorem 1:

Fast Dawid-Skene converges to a stationary point.

Guarantees for Convergence

Theorem 1:

Fast Dawid-Skene converges to a stationary point.

Theorem 2:

If the algorithm is started from an area close to a local maximum of the likelihood, Fast Dawid-Skene is guaranteed to converge to the maximum at a linear rate.

More details in our paper

Improvement: Hybrid Algorithm

- FDS: Empirical Observations
 - Likelihood is not maximized to the same extent as DS
 - DS converges to a better maxima
- Proposal: Hybrid algorithm
 - Start with DS
 - Switch to FDS after difference in priors is below a certain threshold
 - Best of both worlds procedure of DS, speed of FDS

Extensions to FDS

- Online FDS
 - Online setting: Initial set of questions and annotations available, new questions with annotations become available with time
 - Perform aggregation as questions arrive, using information from past data
- Multiple Answers Correct
 - Assumption: truth value of each option is independent
 - Treat each question-option pair as a separate binary question
 - Run FDS/Hybrid algorithm on each question-option pair

Experiments and Results

- Experiments: Comparison of DS, FDS, Hybrid, MV, IWMV, and GLAD [Whitehill et al., 2009] across seven real-world datasets
- Results
 - 3.00x 7.84x speed of FDS compared to DS
 - 1.49x 5.15x speed of Hybrid compared to DS
 - 0.54x 6.09x speed of FDS compared IWMV

Results: Sentiment Polarity Dataset

- DS - IWMV - MV - FDS - Hybrid

Questions: 4968, Options per question: 2, Maximum number of annotators per question: 5

Thank you Questions?