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Objective and Background

Post-hoc attribution methods attempt to explain image classification networks
Model is a black box  no ground truth attributions, challenging to evaluate

 Attribution Methods

 Evaluating Attributions: Common Metrics

Evaluation at several depths, with
focus on three — Input, Middle,
Final — to understand trends in
performance

1. Sort by localization score
2. Bin attribution maps
3. Aggregate and visualize

mean attributions per bin
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Towards Better Understanding Attribution Methods

Separate classification head per grid cell, each only
influenced by pixels inside cell

 Disentangle model from attribution method
 Perform a more systematic, fair, and holistic

evaluation of attribution methods
Gradient G. Backprop IntGrad IxG Grad-CAM Grad-CAM++ Ablation-CAM Score-CAM Layer-CAM Occlusion RISEImage

Backpropagation-based Activation-based Perturbation-based

Shortcomings of Existing Evaluation Metrics

Localization Metric: 

Weakly Supervised Object Localization Grid Pointing Game (GridPG)
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Challenging to evaluate model-faithfulness1

Comparing methods that explain models at varied depths unfair2

Qualitative evaluation sensitive to the selection of examples used3

Distinct
classes

Semantically
similar

Region outside cell can
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 unknown if such
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 Full Disconnection (DiFull)1

 Evaluate and compare at
 identical model depths

 Multi-Layer Attribution Evaluation (ML-Att)2

 Aggregate Attribution Evaluation (AggAtt)3

Aggregate attributions from a
large number of images

Example from 0% - 2% Example from 50% - 95% Example from 98% - 100%

98% - 100%95% - 98%50% - 95%5% - 50%2% - 5%0% - 2%

Smaller bins at either end to
observe trends at tails

Decreasing Localization Score

GridPG DiFull

DiFull identifies strengths and failures of attribution methods, acts as sanity check
Backpropagation-based methods localize perfectly (D), activation-based methods localize poorly (E)

1

Localization improves at deeper layers on GridPG, many methods perform similarly
Methods like IntGrad and IxG (A, B) perform similar to best-performing methods like Grad-CAM (C)

2

AggAtt visualizes performance across dataset, helps understand quantitative results
Visualizations corroborate quantitative results and serve as a holistic visual summary (A-F)
Unlike individual examples, shows a range of performance across different images (e.g. F)
Shows that activation-based methods perform poorly on DiFull by incorrectly attributing repeated class (E)

 Smoothing Attributions

Gradient (Simonyan et al., 2014)
G. Backprop (Springenberg et al., 2015)
IntGrad (Sundararajan et al., 2017)
IxG (Shrikumar et al., 2017)
Grad-CAM (Selvaraju et al., 2017)
Grad-CAM++ (Chattopadhyay et al., 2018)
Ablation-CAM (Desai et al., 2020)

IxG (G) and IntGrad (H) at input layer perform
comparably to Grad-CAM at final layer (C)
Smoothing can show the net contribution of a local
region to the logit for piece-wise linear models

 Post-hoc Gaussian smoothing of attributions can improve GridPG localization

K: Gaussian kernel size
Green: Positive attributions, Red: Negative attributions
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