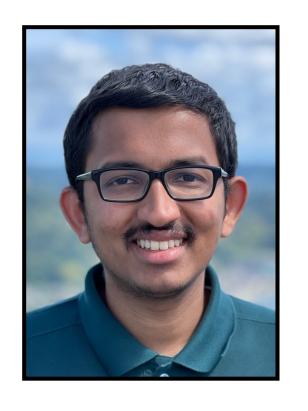


Discover-then-Name: Task-Agnostic Concept Bottlenecks via Automated Concept Discovery



Sukrut Rao*

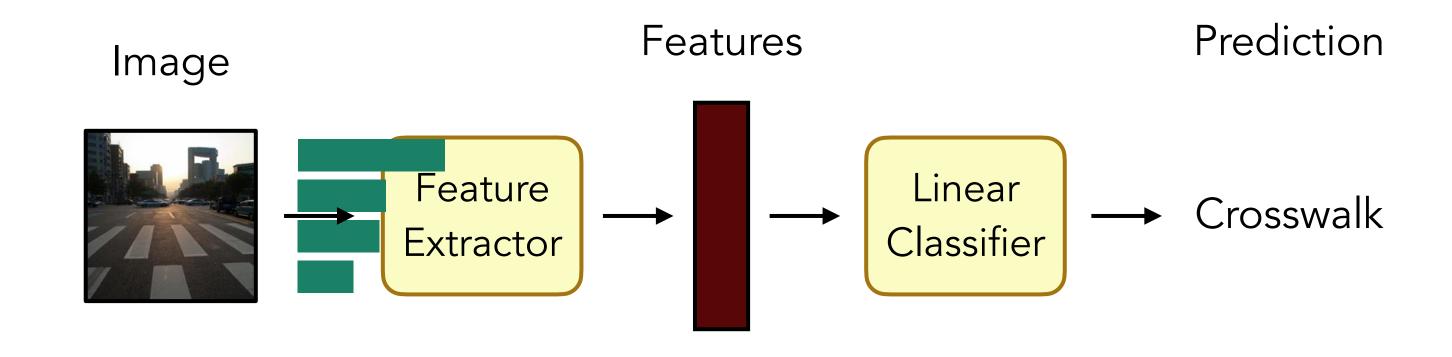
Sweta Mahajan*

Moritz Böhle

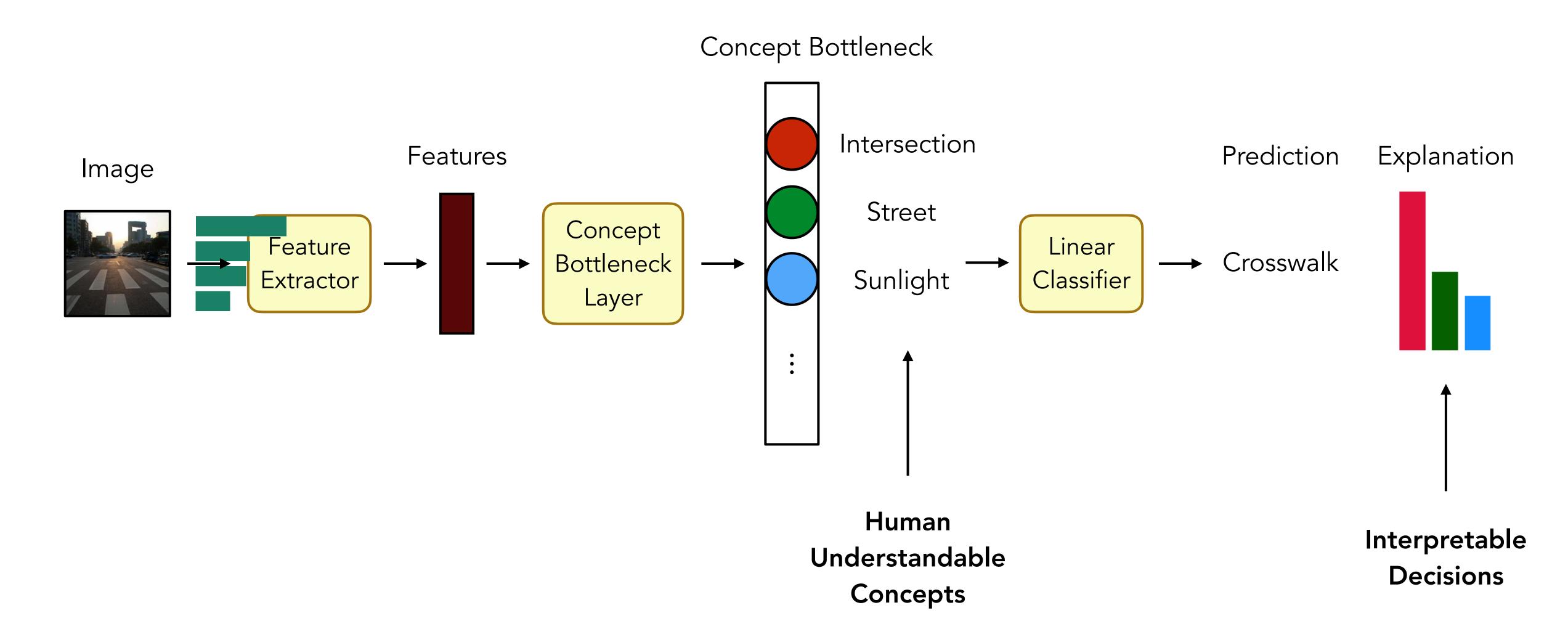
Bernt Schiele

Max Planck Institute for Informatics, Saarland Informatics Campus

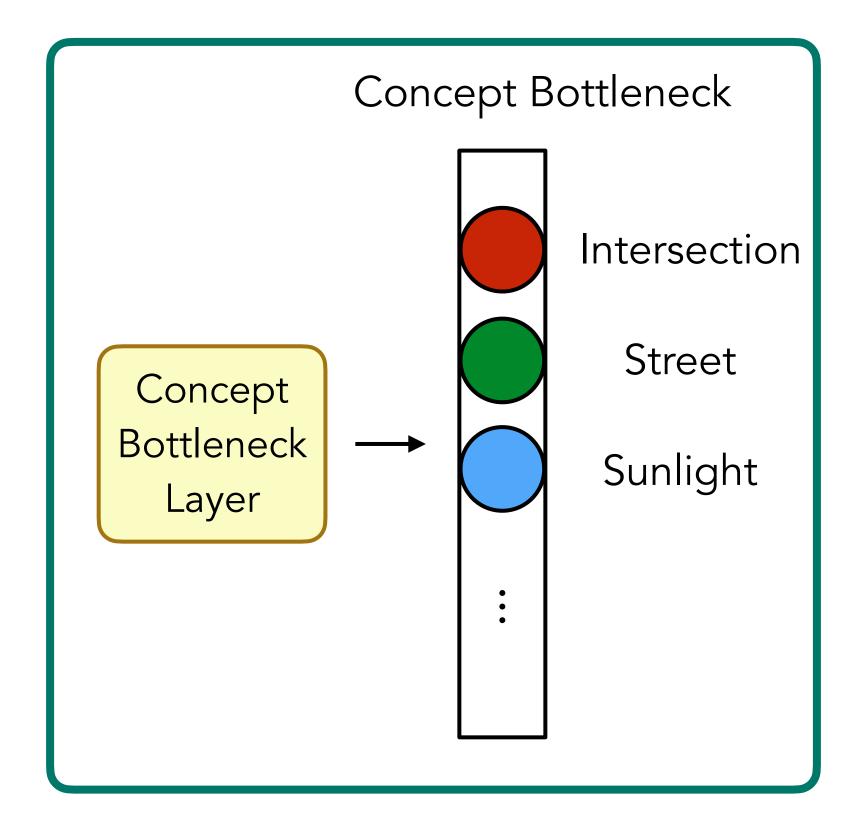
Concept Bottleneck Models



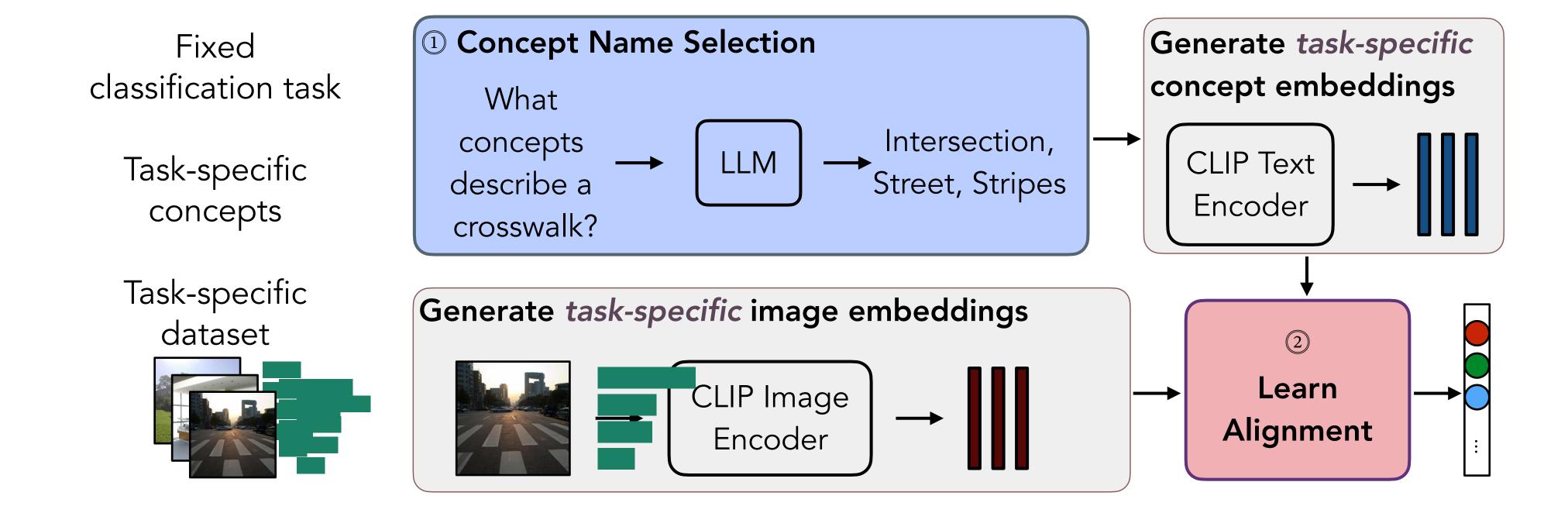
Concept Bottleneck Models



Concept Bottleneck Models

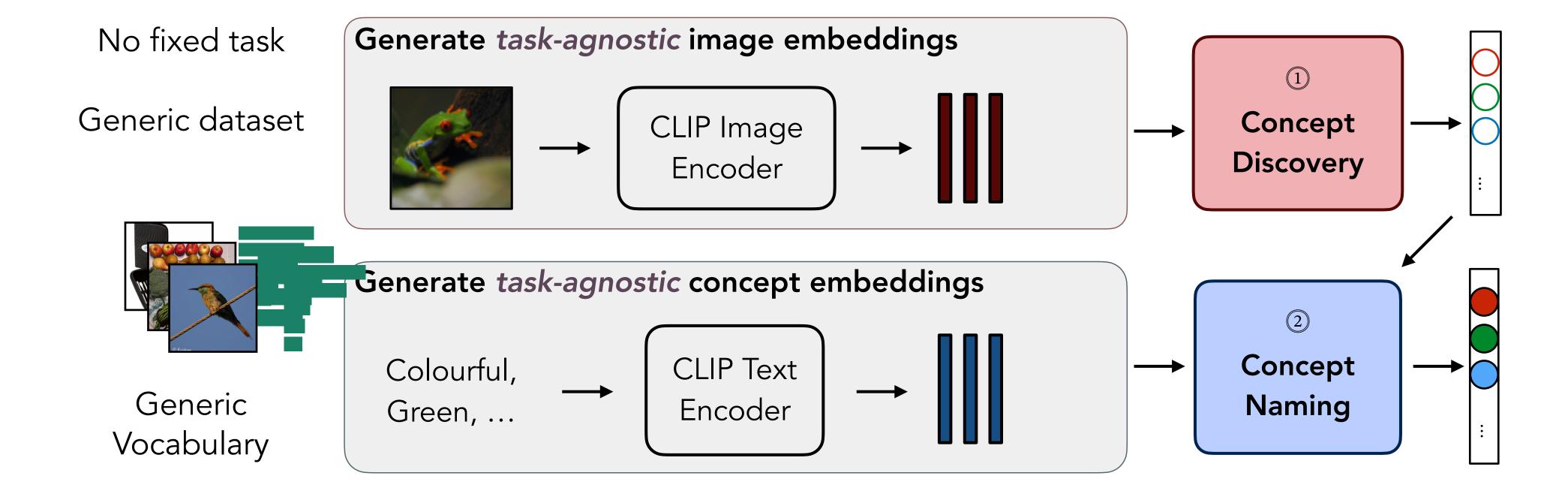


Typical approach¹: Select concepts names, learn mapping



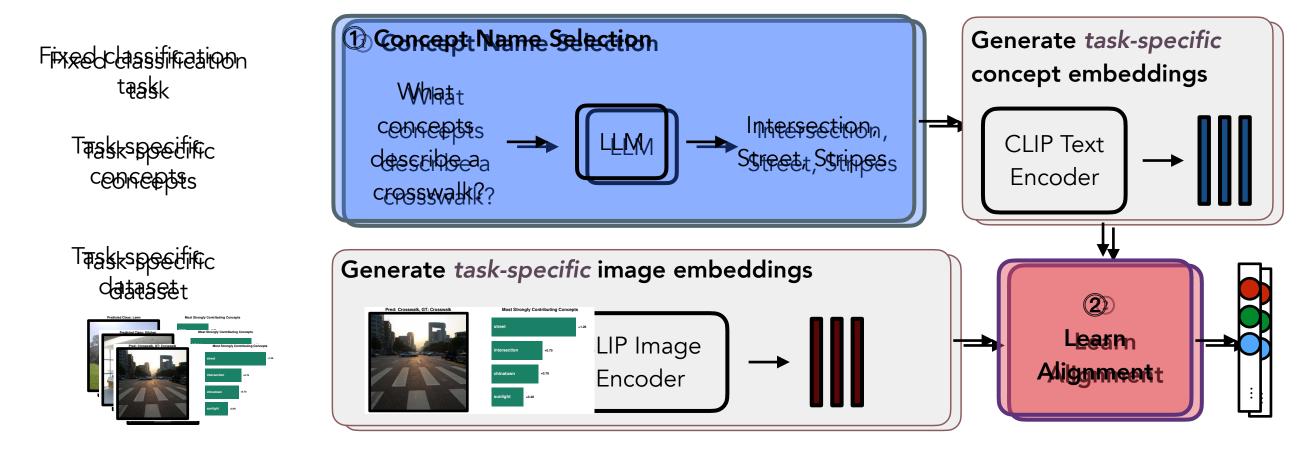
¹Examples: Label-Free CBM [Oikarinen et al., 2023], LaBo [Yang et al., 2023], CDM [Panousis et al., 2023], DCLIP [Menon et al., 2023]

Ours: Discover concepts, then assign names



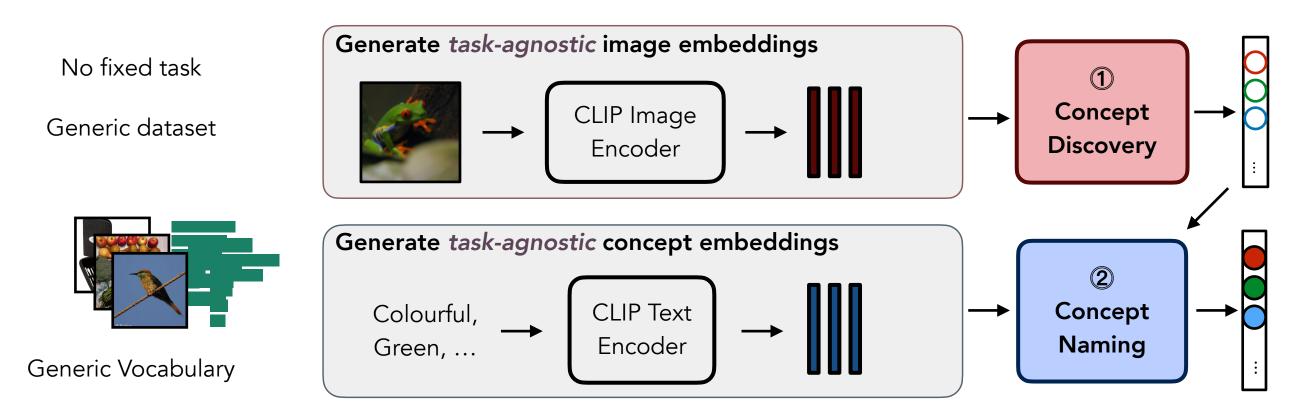
Overview

Typical approach: Select concepts names, learn mapping

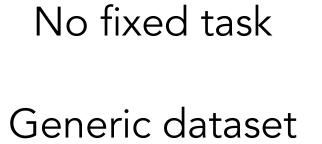


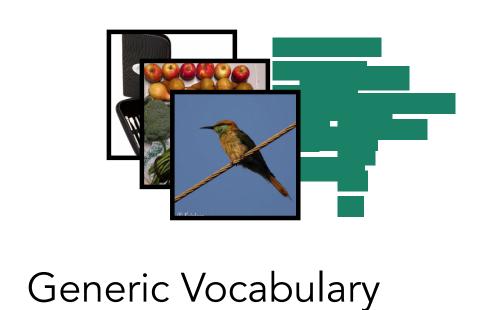
- Need to query LLMs for concepts
- Concept bottleneck for single task
- Aligns to predefined concepts

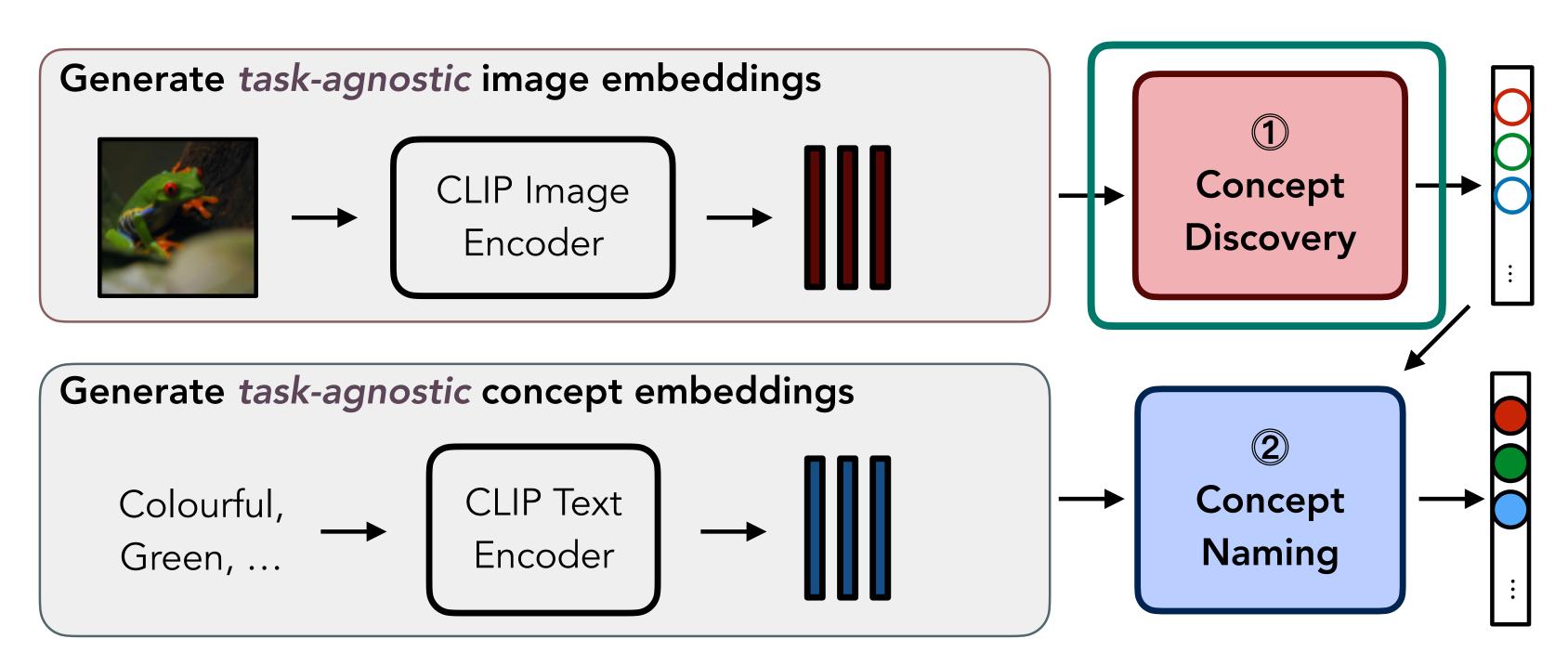
Ours: Discover concepts, then assign names



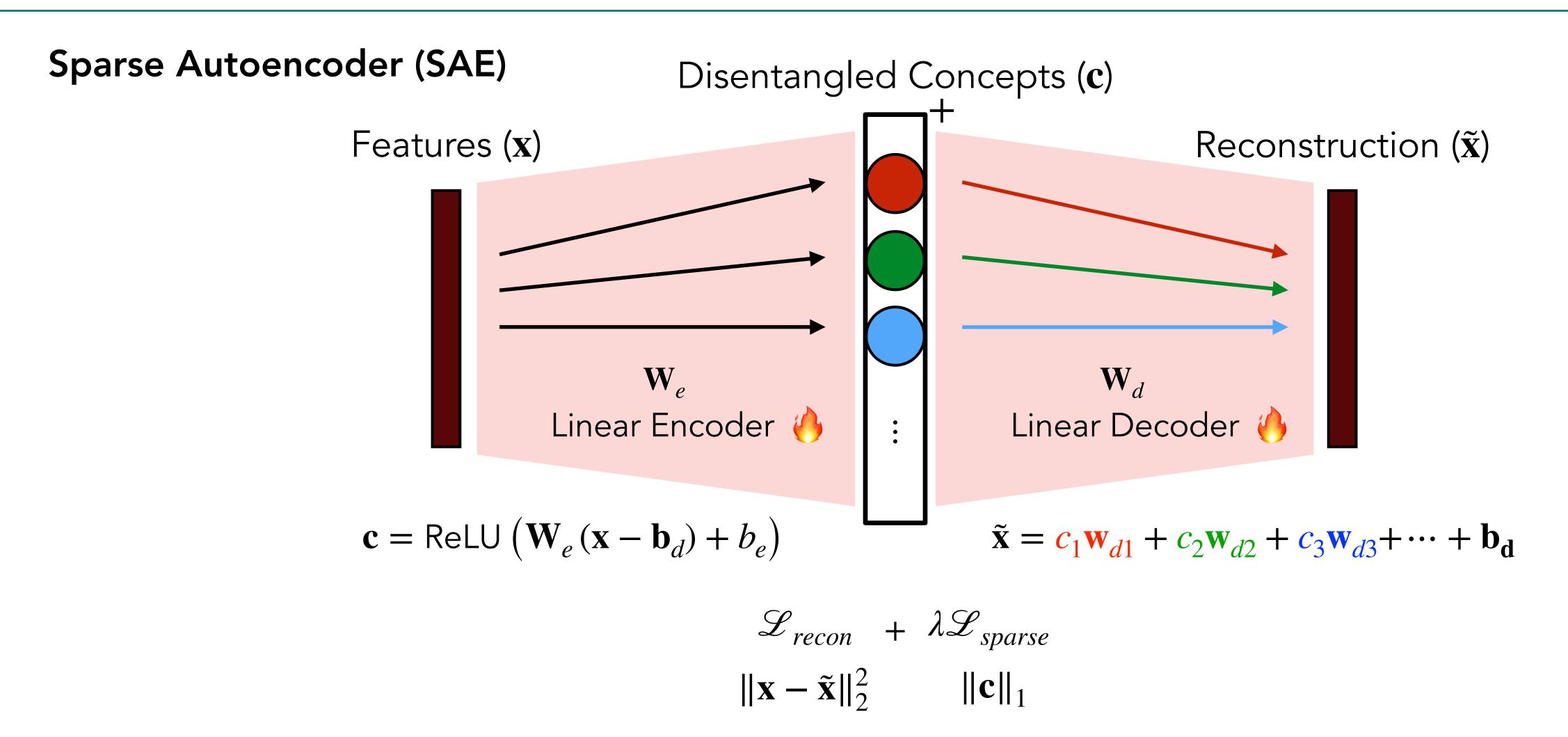
- No LLM queries needed
- Single concept bottleneck for multiple datasets
- Identifies concepts used by the model



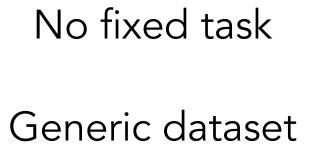


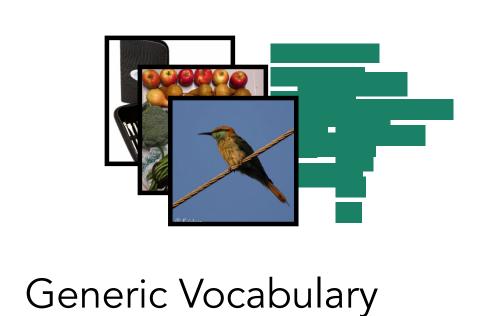


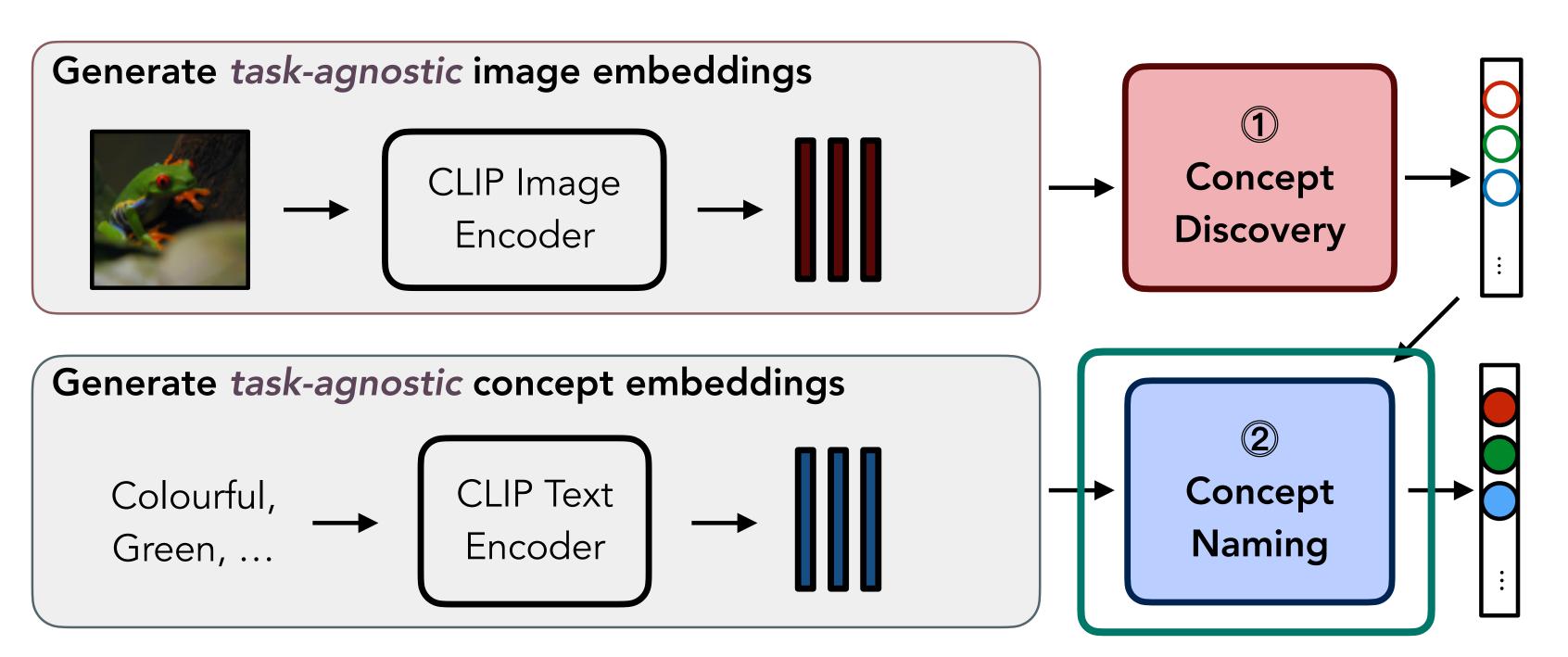
1 Concept Discovery



Sparse Autoencoder: Bricken et al. Towards Monosemanticity: Decomposing Language Models With Dictionary Learning. Transformer Circuits Thread, 2023.



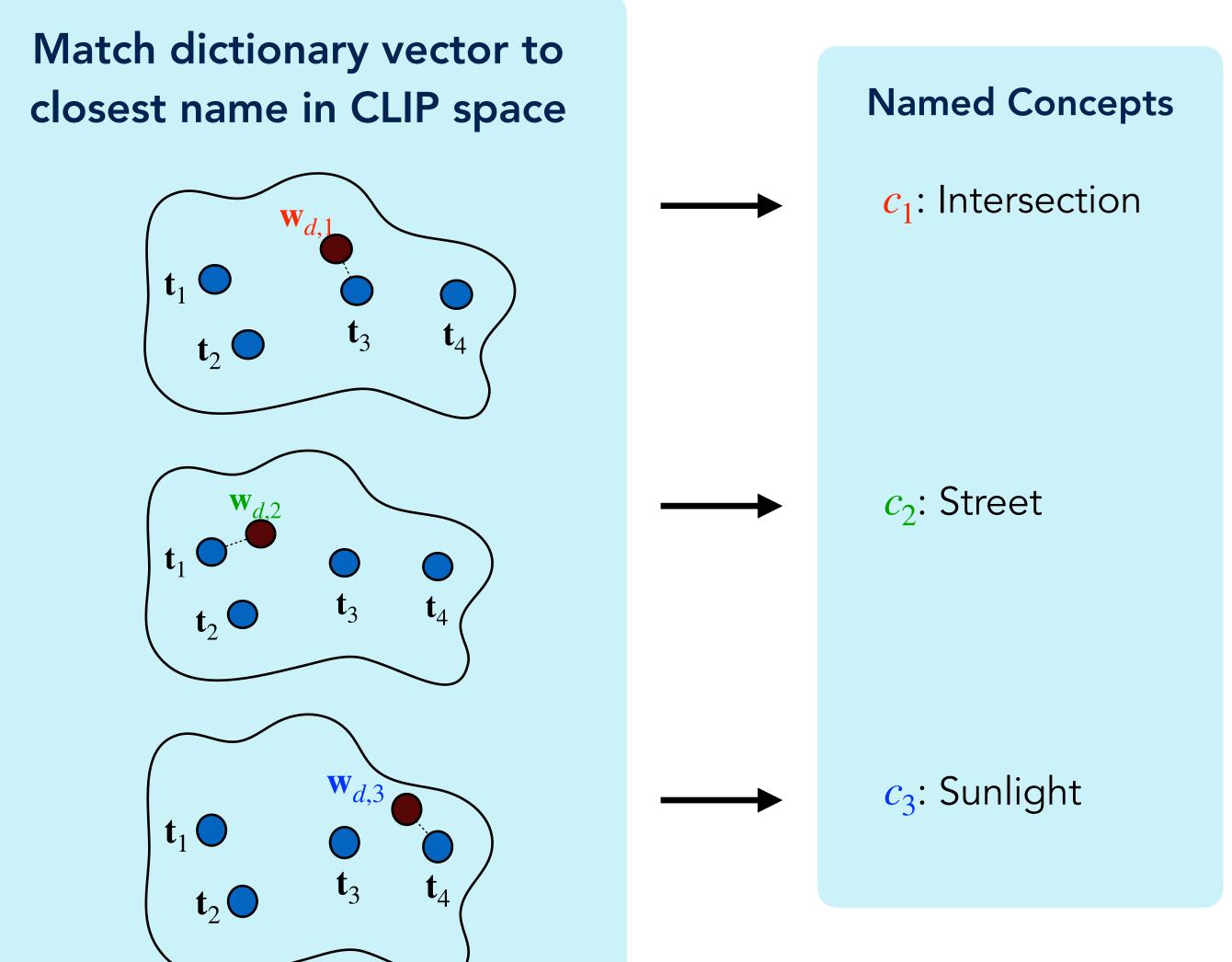




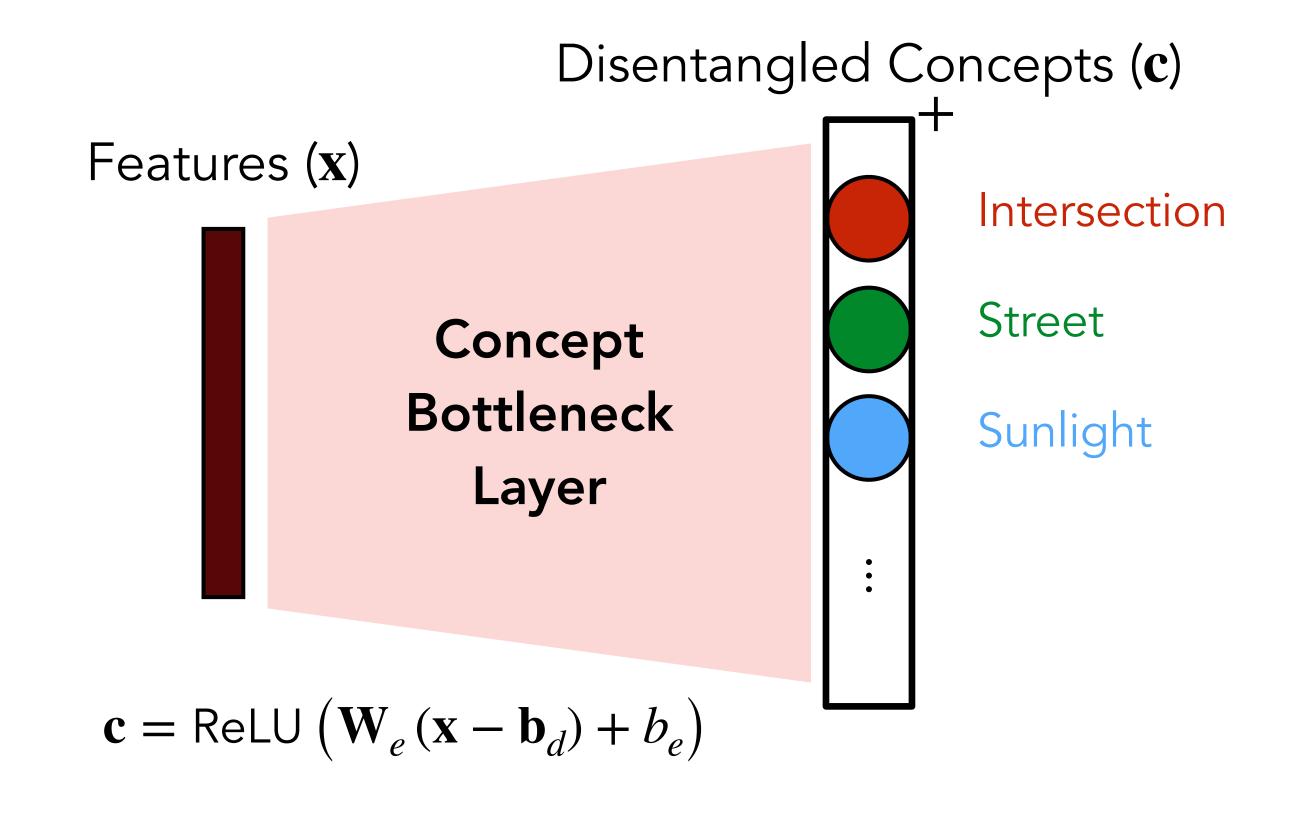
² Concept Naming

$$\tilde{\mathbf{x}} = c_1 \mathbf{w}_{d1} + c_2 \mathbf{w}_{d2} + c_3 \mathbf{w}_{d3} + \dots + \mathbf{b_d}$$

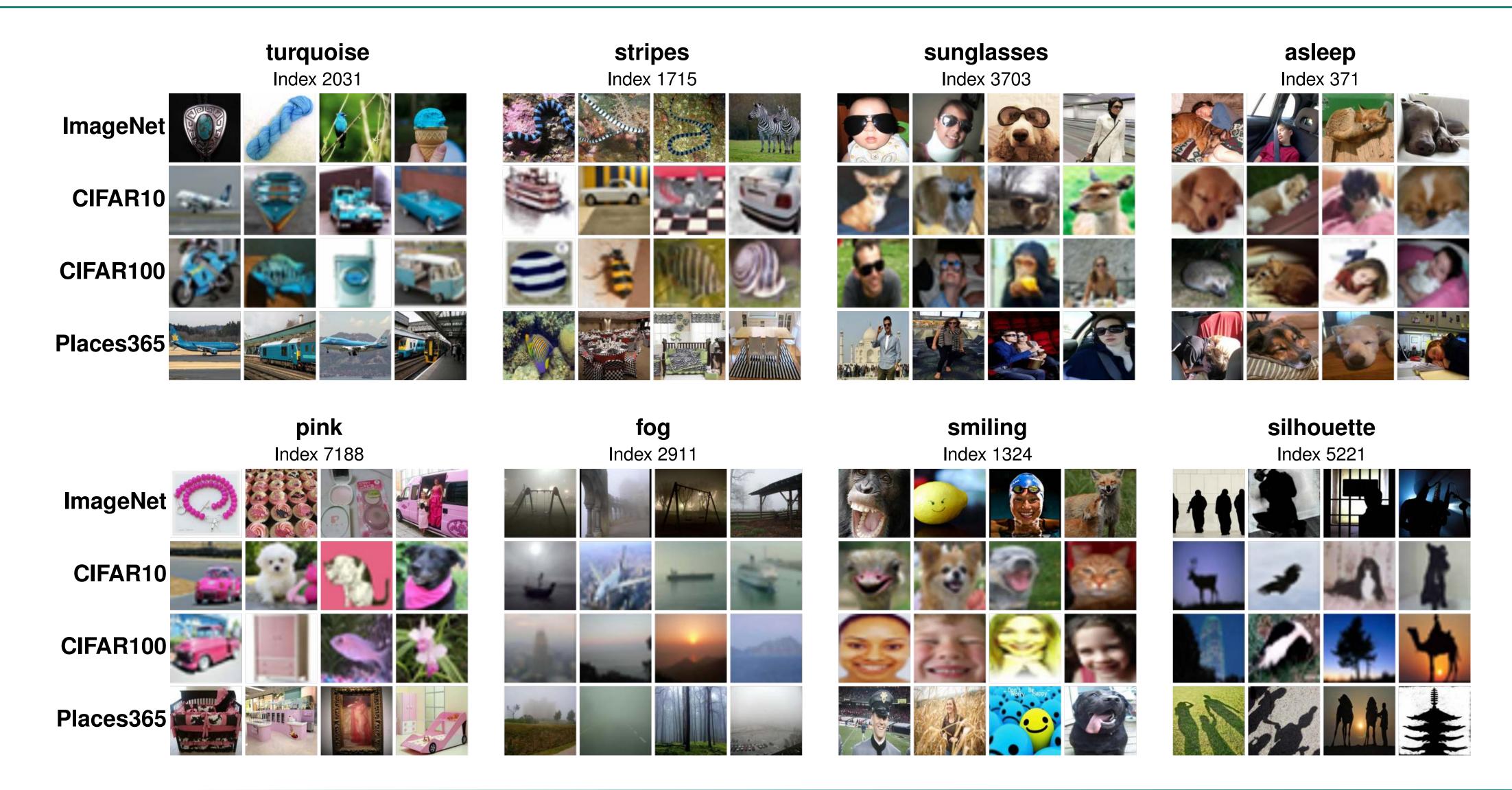
$$\begin{array}{c} \text{Match dictional closest name in } \\ \text{Street} \quad \mathbf{t_1} \\ \text{Pink} \quad \mathbf{t_2} \\ \text{Intersection} \quad \mathbf{t_3} \\ \text{Sunlight} \quad \mathbf{t_4} \\ \end{array}$$



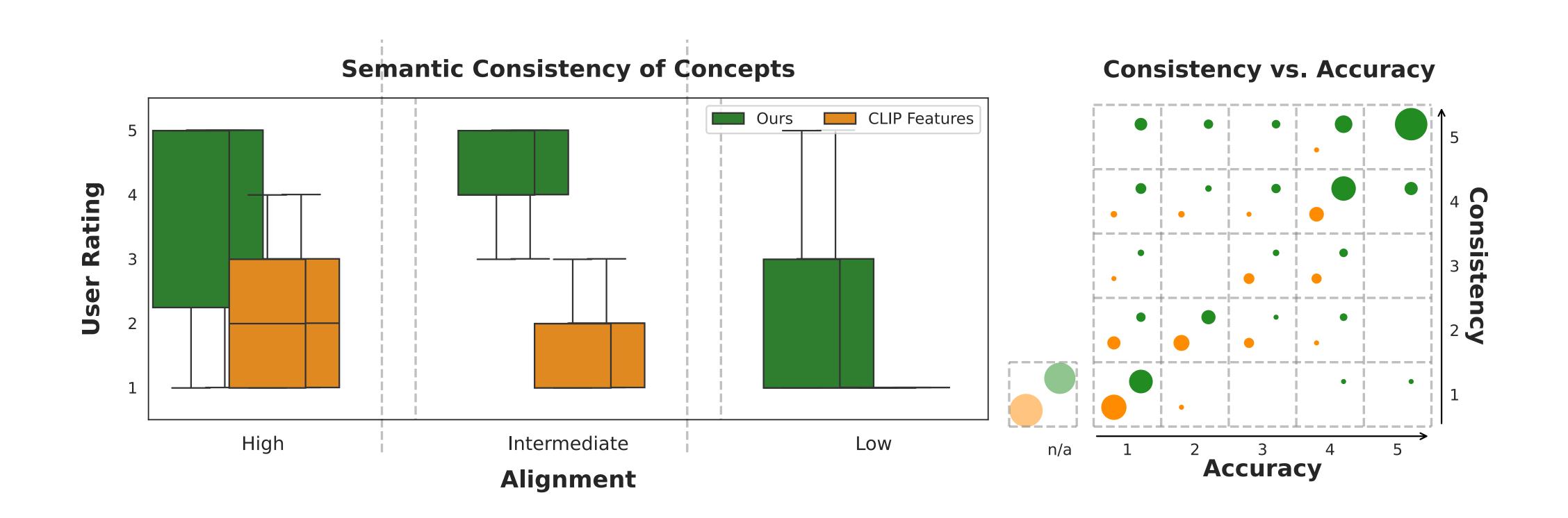
Concept Bottleneck Layer



Consistent and Interpretable Concepts



Consistent and Interpretable Concepts: User Study

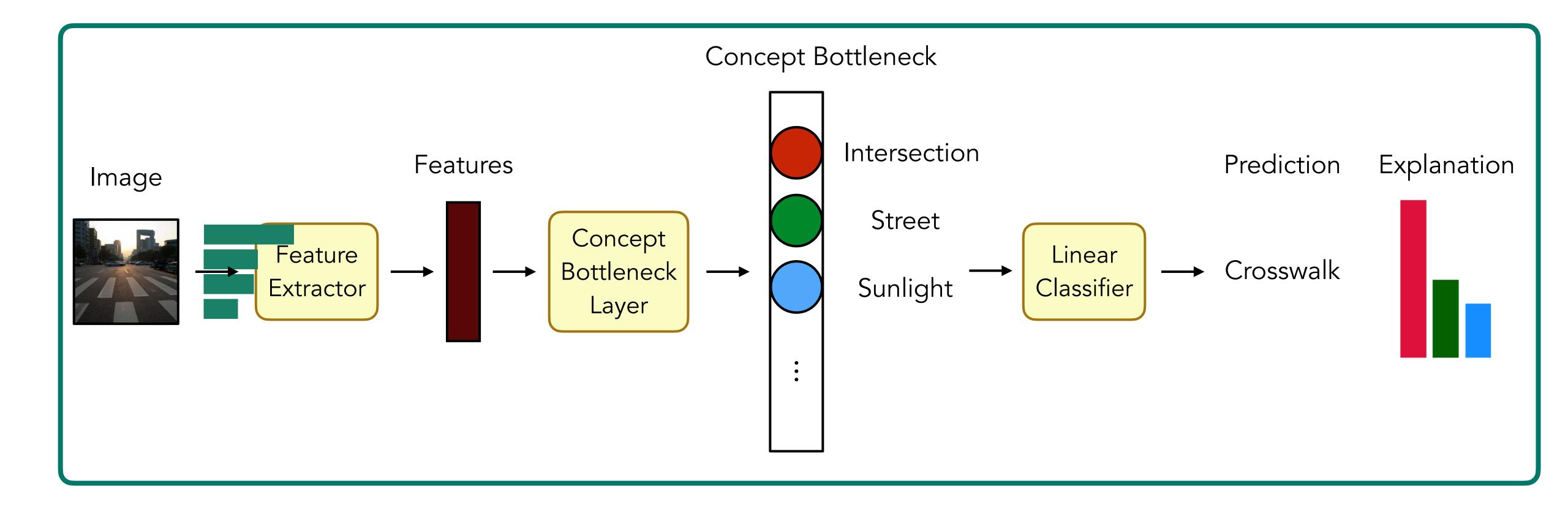


- Better semantic consistency than CLIP features
- High name accuracy for semantically consistent concepts

Granularity Controllable by Vocabulary

tree → christmas tree
Index 7446
Index 8167

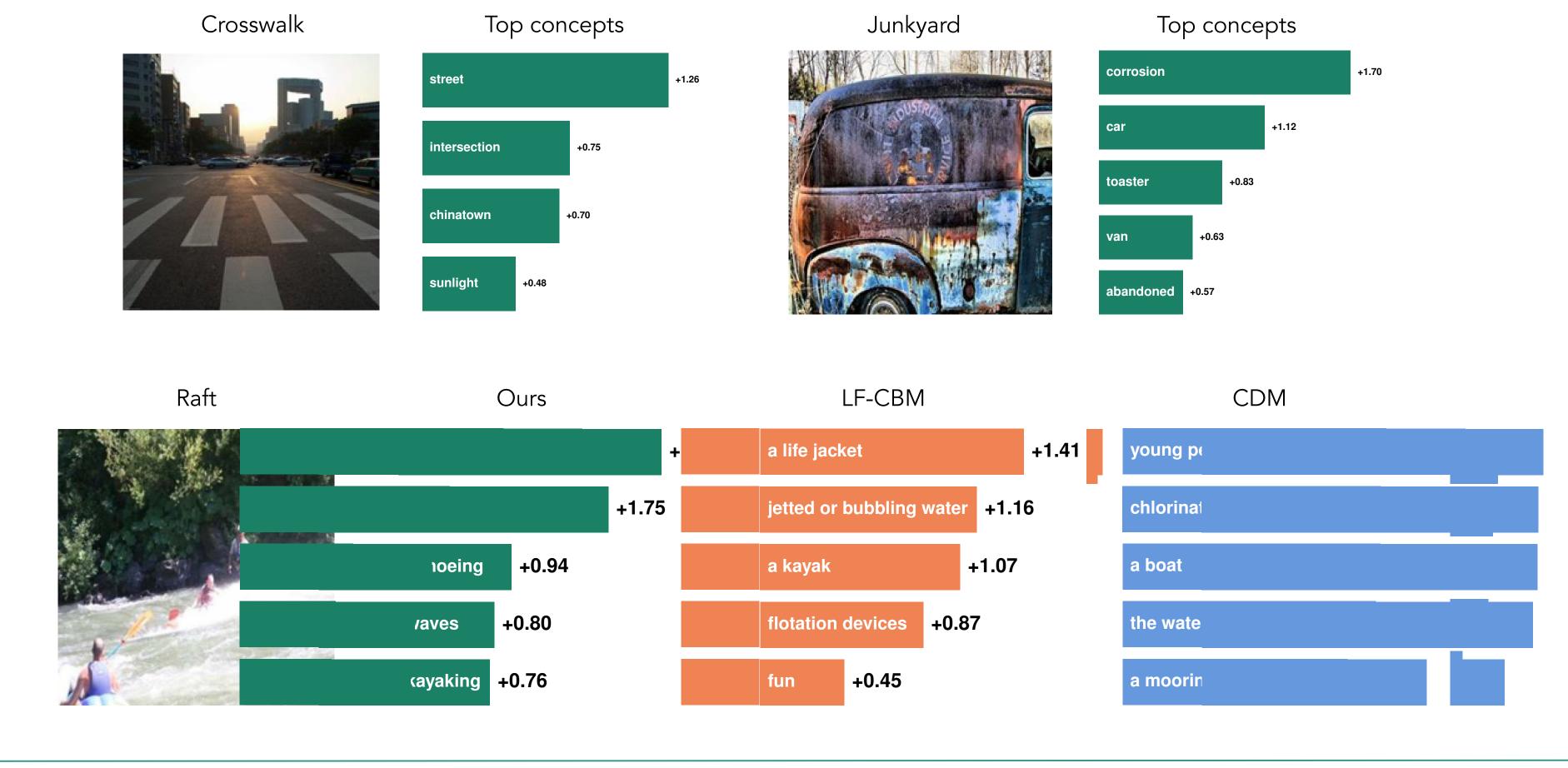
Concept Bottleneck Models: DN-CBM



Classification Performance

Model	CLIP ResNet-50				CLIP ViT-B/16			
	Places365	ImageNet	CIFAR10	CIFAR100	Places365	ImageNet	CIFAR10	CIFAR100
Linear Probe	53.4	73.3	88.7	70.3	55.1	80.2	96.2	83.1
Zero Shot	38.7	59.6	75.6	41.6	41.2	68.6	91.6	68.7
LF-CBM	49.0	67.5	86.4	65.1	50.6	75.4	94.6	77.4
LaBo	_	68.9	87.9	69.1	<u>-</u>	78.9	95.7	81.2
CDM	52.7	72.2	86.5	67.6	52.6	79.3	95.3	80.5
DCLIP	37.9	59.6	_		40.3	68.0	_	
DN-CBM (Ours)	53.5	72.9	87.6	67.5	55.1	79.5	96.0	82.1

- Classification Performance
- Explanations for Decisions



- Classification Performance
- Explanations for Decisions
- Class-level Explanations

Crosswalk

Junkyard

- Classification Performance
- Explanations for Decisions
- Class-level Explanations
- Effective Interventions

Training Groups

Landbird on Land

Waterbird on Water

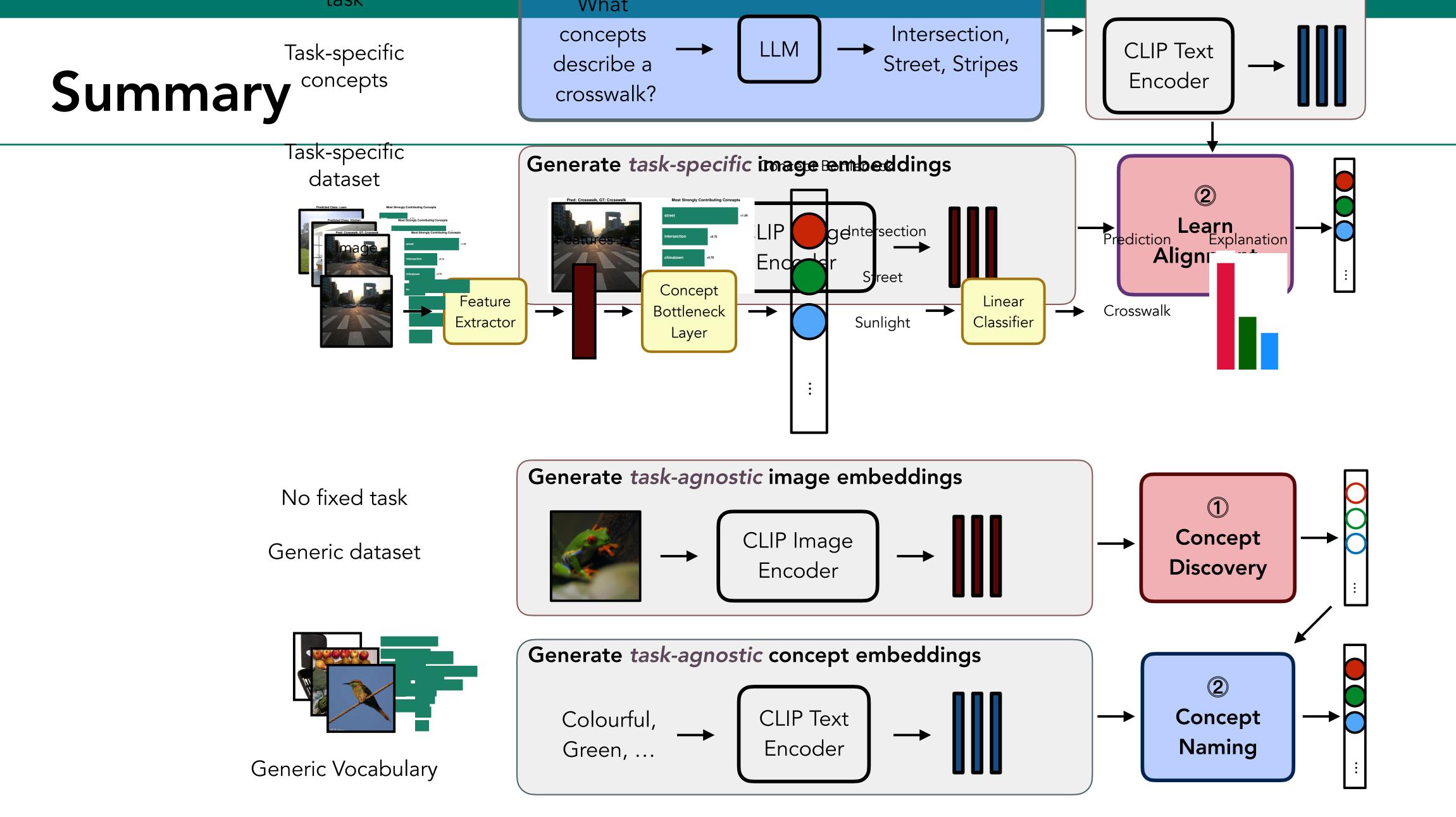
Test-only (Worst) Groups

Landbird on Water

Waterbird on Land

	Bird concepts	Non-bird concepts		
Landbird	sparrow, parrot, crow	forest, clic		
Waterbird	gull, ducks	landing, beach, canoeing		

		Worst Groups		
Model	Overall	Landbird on Water	Waterbird on Land	
Before Intervention	82.8	71.3	57.5	
Only Bird Concepts	89.4 (+6.6)	86.6 (+15.3)	71.3 (+13.8)	
Only Non-bird Concepts	60.8 (-22.0)	28.5 (-42.8)	28.8 (-28.7)	



Thank you!

• Poster Session: 7

• Date and Time: October 4, 2024, 10:30 AM – 12:30 PM

Paper

https://arxiv.org/abs/2407.14499

Code

https://github.com/neuroexplicit-saar/Discover-then-Name

