

**MAX PLANCK INSTITUTE** FOR INFORMATICS



# **Good Teachers Explain: Explanation-enhanced Knowledge Distillation**





Amin Parchami-Araghi

Moritz Böhle

Max Planck Institute for Informatics, Saarland Informatics Campus

SIC Saarland Informatics Campus







Sukrut Rao



Bernt Schiele

# **Knowledge Distillation**

Simply match the logits between teacher and student for every input.

$$D_{\mathrm{KL}}(P^{T} || P^{S}) = \sum_{j=1}^{C} P_{j}^{T}(x) \log \left(\frac{P_{j}^{T}(x)}{P_{j}^{S}(x)}\right)$$

**Goal:** a student with the same accuracy as the teacher

**Recently:** For long-enough distillation, the student can reach teacher's accuracy.

#### But does this indicate a successful distillation?



ECCV 2024

Good Teachers Explain: Explanation-enhanced Knowledge Distillation





# **Knowledge Distillation**

### Test Samples Teacher: VVVVVXVXVX Student: X V X X V V V V

Both 66% Accurate, only 33% agreement.

Despite matching accuracies, the agreement can be significantly lower.

#### There can be a **disparity between the two functions** despite having same accuracy



ECCV 2024

[2] Stanton et al., Does Knowledge Distillation Really Work?, NeurIPS 2021

Good Teachers Explain: Explanation-enhanced Knowledge Distillation

#### Besides accuracy, a recent work [2] evaluate the `agreement' between the two models.





We extend the work of Stanton et al. and aim towards *faithful KD*. *Faithful KD* looks beyond accuracy, aiming for *functionally similar* Teacher and Student



[2] Stanton et al., Does Knowledge Distillation Really Work?, NeurIPS 2021

ECCV 2024

Good Teachers Explain: Explanation-enhanced Knowledge Distillation



We extend the work of Stanton et al. and aim towards *faithful KD*. **Faithful KD** looks beyond accuracy, aiming for *functionally similar* Teacher and Student

This implies:

High teacher-student agreement Especially under limited-data settings.

[2] Stanton et al., Does Knowledge Distillation Really Work?, NeurIPS 2021

ECCV 2024

Good Teachers Explain: Explanation-enhanced Knowledge Distillation

### Test Samples Teacher: $\checkmark$ Student: X V X X V V V V



We extend the work of Stanton et al. and aim towards *faithful KD*.

This implies:

- High teacher-student agreement
- Similar predictions, *but for similar reasons*



ECCV 2024

Good Teachers Explain: Explanation-enhanced Knowledge Distillation

### *Faithful KD* looks beyond accuracy, aiming for *functionally similar* Teacher and Student





We extend the work of Stanton et al. and aim towards *faithful KD*. *Faithful KD* looks beyond accuracy, aiming for *functionally similar* Teacher and Student

This implies:

- High teacher-student agreement
- Similar predictions, *but for similar reasons*

Maintain the interpretability of the teacher



ECCV 2024





We extend the work of Stanton et al. and aim towards *faithful KD*. **Faithful KD** looks beyond accuracy, aiming for *functionally similar* Teacher and Student

This implies:

- High teacher-student agreement
- Similar predictions, *but for similar reasons*

Maintain the interpretability of the teacher



ECCV 2024



Good Teachers Explain: Explanation-enhanced Knowledge Distillation



# **Our Work: Leverage explanation methods!**

- We want to make the two models more functionally similar!



Can we simply use existing explanation methods for a more faithful KD?



[3] Rao et. al. Studying How to Efficiently and Effectively Guide Models using Explanations, ICCV 2023

ECCV 2024

Good Teachers Explain: Explanation-enhanced Knowledge Distillation

#### Existing explanation methods have shown to be powerful for steering models [3]





# **Our Work: Optimizing for Faithfulness**

Inspired by model guidance, we explore the benefits of simply optimizing for explanation similarity

- $\mathcal{L} = \mathcal{L}$
- $\mathcal{L}_{exp} = 1 sim(\mathbf{Explain}(T, x, \hat{y}_T), \mathbf{Explain}(S, x, \hat{y}_T))$



ECCV 2024

$$_{KD} + \lambda \mathcal{L}_{exp}$$





# **Our Work: Optimizing for Faithfulness**

Inspired by model guidance, we explore the benefits of simply optimizing for explanation similarity

 $\mathcal{L} = \mathcal{L}$ 

- Label- and Parameter-free
- Model-agnostic
- Utilize existing explanation methods lacksquare

ECCV 2024

$$_{KD} + \lambda \mathcal{L}_{exp}$$

 $\mathcal{L}_{exp} = 1 - sim(\mathbf{Explain}(T, x, \hat{y}_T), \mathbf{Explain}(S, x, \hat{y}_T))$ 





# **Our Work: Optimizing for Faithfulness**

Inspired by model guidance, we explore the benefits of simply optimizing for explanation similarity

- Label- and Parameter-free
- Model-agnostic
- Utilize existing explanation methods



Selvaraju et al., Grad-CAM, ICCV 2017; Böhle et al., B-cos, CVPR 2022 & TPAMI 2024

ECCV 2024

Good Teachers Explain: Explanation-enhanced Knowledge Distillation

 $\mathcal{L} = \mathcal{L}_{KD} + \lambda \mathcal{L}_{exp}$  $\mathcal{L}_{exp} = 1 - sim(\mathbf{Explain}(T, x, \hat{y}_T), \mathbf{Explain}(S, x, \hat{y}_T))$ 



GradCAM Explanations







# **Desideratum 1: High Agreement with Teacher**

**Setting:** ImageNet; Distill on different amounts of available data

Evaluating on the complete test set

#### Larger gains for smaller distillation sizes



ECCV 2024

Good Teachers Explain: Explanation-enhanced Knowledge Distillation

| Standard Models<br>Teacher ResNet-34<br>Accuracy 73.3%     | 50 S           | 50 Shots |       | 200 Shots |     |
|------------------------------------------------------------|----------------|----------|-------|-----------|-----|
|                                                            | Acc.           | Agr.     | Acc.  | Agr.      | Ac  |
| KD [37, 5]                                                 | 49.8           | 55.5     | 63.1  | 71.9      | 71  |
| + e <sup>2</sup> KD (GradCA                                | M) <b>54.9</b> | 61.7     | 64.1  | 73.2      | 71  |
|                                                            | + 5.1          | + 6.2    | + 1.0 | + 1.3     | + ( |
|                                                            |                |          |       |           |     |
| <b>B-cos Models</b><br>Teacher ResNet-34<br>Accuracy 72.3% | <b>50 S</b>    | 50 Shots |       | 200 Shots |     |
|                                                            | Acc.           | Agr.     | Acc.  | Agr.      | Ac  |
| KD [37, 5]                                                 | 35.3           | 38.4     | 56.5  | 62.9      | 70  |
| + $e^2 KD$ (B-cos)                                         | 43.9           | 48.4     | 58.8  | 66.0      | 70  |
|                                                            | + 8.6          | +10.0    | + 2.3 | + 3.1     | + 0 |
| <b>B-cos Models</b><br>Teacher DenseNet-16                 | <b>50 S</b>    | 50 Shots |       | 200 Shots |     |
| Accuracy 75.2%                                             | Acc.           | Agr.     | Acc.  | Agr.      | Ac  |
| KD [37, 5]                                                 | 37.3           | 40.2     | 51.3  | 55.6      | 71. |

45.4 49.0

+ 8.1 + 8.8

+  $e^2 KD$  (B-cos)

Amin Parchami-Araghi

**60.7** 

+ 4.4 + 5.1

55.7











# **Desideratum 1: High Agreement with Teacher**

**Distillation:** B-cos DenseNet-169 → B-cos ResNet-18

| Distill:                    | SUN397      | Teacher    | ImageNet Teache |             |  |
|-----------------------------|-------------|------------|-----------------|-------------|--|
| To:                         | SUN397      | Student    | ImageNet Studen |             |  |
| With:                       | ImageN      | let images | SUN397 images   |             |  |
|                             | Acc.        | Agr.       | Acc.            | Agr.        |  |
| Teacher DenseNet-169        | 60.5        | -          | 75.2            | -           |  |
| Baseline ResNet-18          | 57.7        | 67.9       | 68.7            | 75.5        |  |
| KD [4, 19]                  | 53.5        | 65.0       | 14.9            | 16.7        |  |
| + e <sup>2</sup> KD (B-cos) | <b>54.9</b> | 67.7       | <b>19.8</b>     | <b>22.1</b> |  |

#### e<sup>2</sup>KD provides gains even on unrelated images







## **Desideratum 2: Learning the 'Right' Features**

Task: Classify Landbird vs. Waterbird **Distillation Data:** Landbird on Land, Waterbird on Water *Test-time:* Landbird on <u>Water</u>, Waterbird on <u>Land</u> **Teacher:** ResNet-50 explicitly guided to focus on the bird

Focusing on the Right' input features gives OOD robustness.



ECCV 2024

Good Teachers Explain: Explanation-enhanced Knowledge Distillation







## **Desideratum 2: Learning the 'Right' Features**

Task: Classify Landbird vs. Waterbird **Distillation Data:** Landbird on Land, Waterbird on Water *Test-time:* Landbird on <u>Water</u>, Waterbird on <u>Land</u> **Teacher:** ResNet-50 explicitly guided to focus on the bird

Focusing on the Right' input features gives OOD robustness.

The student might deviate from the teacher!



ECCV 2024

Good Teachers Explain: Explanation-enhanced Knowledge Distillation







## **Desideratum 2: Learning the 'Right' Features**

Task: Classify Landbird vs. Waterbird **Distillation Data:** Landbird on Land, Waterbird on Water *Test-time:* Landbird on <u>Water</u>, Waterbird on <u>Land</u> **Teacher:** ResNet-50 explicitly guided to focus on the bird

Focusing on the Right' input features gives OOD robustness.

The student might deviate from the teacher!

*e<sup>2</sup>KD effectively maintains correct reasoning!* 



ECCV 2024

Good Teachers Explain: Explanation-enhanced Knowledge Distillation



Distill a teacher with desirable explanations!

- Due to its training 1.
- 2. Due to its architecture







Distill a teacher with desirable explanations!

#### Due to its training 1.

Pascal VOC as multi-label classification





Good Teachers Explain: Explanation-enhanced Knowledge Distillation





Distill a teacher with desirable explanations!

Due to its training 1.

Pascal VOC as multi-label classification

|                             | <b>EPG Teacher</b> |      |             | <b>IoU Teacher</b> |             |             |
|-----------------------------|--------------------|------|-------------|--------------------|-------------|-------------|
|                             | <b>EPG</b>         | IoU  | F1          | EPG                | IoU         | F1          |
| Teacher ResNet-50           | 75.7               | 21.3 | 72.5        | 65.0               | 49.7        | 72.8        |
| Baseline ResNet-18          | 50.0               | 29.0 | 58.0        | 50.0               | 29.0        | 58.0        |
| KD [38]                     | 60.1               | 31.6 | 60.1        | 58.9               | 35.7        | 62.7        |
| + e <sup>2</sup> KD (B-cos) | <b>71.1</b>        | 24.8 | <b>67.6</b> | 60.3               | <b>45.7</b> | <b>64.8</b> |



ECCV 2024

Good Teachers Explain: Explanation-enhanced Knowledge Distillation







#### Distill a teacher with desirable explanations!

- Due to its training
- Due to its architecture 2.



### Can we instead *distill* such a prior?

#### **Distillation:** B-cos DenseNet-169 $\rightarrow$ B-cos ViT<sub>Tinv</sub> Setting: ImageNet



Böhle et al., B-cos Alignment for Inherently Interpretable CNNs and Vision Transformers, TPAMI 2024

ECCV 2024

Good Teachers Explain: Explanation-enhanced Knowledge Distillation

#### **CNN** Teacher







#### Distill a teacher with desirable explanations!

- Due to its training
- Due to its architecture 2.



### Can we instead *distill* such a prior?

#### **Distillation:** B-cos DenseNet-169 $\rightarrow$ B-cos Setting: ImageNet



Böhle et al., B-cos Alignment for Inherently Interpretable CNNs and Vision Transformers, TPAMI 2024

ECCV 2024

Good Teachers Explain: Explanation-enhanced Knowledge Distillation



|                     | T: B-cos DenseNet-169 | 75.2 | _           |
|---------------------|-----------------------|------|-------------|
| ViT <sub>Tiny</sub> | B: B-cos $ViT_{Tiny}$ | 60.0 | 64.6        |
|                     | KD                    | 64.8 | 70.1        |
|                     | $+ e^2 KD$            | 66.3 | <b>71.8</b> |
|                     |                       |      |             |





#### Distill a teacher with desirable explanations!

- Due to its training
- Due to its architecture 2.



#### Measuring shift-equivariance

![](_page_22_Picture_6.jpeg)

ECCV 2024

Good Teachers Explain: Explanation-enhanced Knowledge Distillation

![](_page_22_Figure_9.jpeg)

### e<sup>2</sup>KD with Frozen Explanations

![](_page_23_Picture_1.jpeg)

![](_page_23_Picture_2.jpeg)

![](_page_23_Picture_4.jpeg)

ECCV 2024

![](_page_23_Figure_10.jpeg)

![](_page_23_Picture_11.jpeg)

### e<sup>2</sup>KD with Frozen Explanations

![](_page_24_Picture_1.jpeg)

![](_page_24_Picture_2.jpeg)

![](_page_24_Picture_5.jpeg)

Good Teachers Explain: Explanation-enhanced Knowledge Distillation

![](_page_24_Picture_7.jpeg)

![](_page_24_Figure_10.jpeg)

![](_page_24_Picture_11.jpeg)

# **Good Teachers Explain: Explanation-enhanced Knowledge Distillation**

![](_page_25_Figure_1.jpeg)

#### **Poster ID:** #330

#### Paper https://arxiv.org/abs/2402.03119 I DE LA COLLEGA

Code <u>github.com/m-parchami/GoodTeachersExplain</u>

![](_page_25_Picture_6.jpeg)

**Poster Session:** Tue 1 Oct 2024, 10:30 a.m. — 12:30 p.m. CEST

Contact <u>mparcham@mpi-inf.mpg.de</u>

![](_page_25_Picture_9.jpeg)