attribution-methods

Good Teachers Explain: Explanation-Enhanced Knowledge Distillation

Knowledge Distillation (KD) has proven effective for compressing large teacher models into smaller student models. While it is well known that student models can achieve similar accuracies as the teachers, it has also been shown that they nonetheless …

Better Understanding Differences in Attribution Methods via Systematic Evaluations

Deep neural networks are very successful on many vision tasks, but hard to interpret due to their black box nature. To overcome this, various post-hoc attribution methods have been proposed to identify image regions most influential to the models' …

Studying How to Efficiently and Effectively Guide Models with Explanations

Despite being highly performant, deep neural networks might base their decisions on features that spuriously correlate with the provided labels, thus hurting generalization. To mitigate this, ‘model guidance’ has recently gained popularity, i.e. the …

Understanding Attributions

Towards Better Understanding Attribution Methods

Towards Better Understanding Attribution Methods

Deep neural networks are very successful on many vision tasks, but hard to interpret due to their black box nature. To overcome this, various post-hoc attribution methods have been proposed to identify image regions most influential to the models' …